
Conformal field theory and the
cohomology of the moduli space
of stable bundles

Michael Thaddeus
Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB England

1 Introduction

Let Σg be a compact Riemann surface of genus g ≥ 2, and let Λ be a line bundle
over Σg of degree 1. Then the moduli space of rank 2 stable bundles V over Σg

such that Λ2V ∼= Λ was shown by Seshadri [19] to be a nonsingular projective variety
Ng . Its rational cohomology ring H∗(Ng ) is exceedingly rich and despite years of
study has never quite been computed in full. The object of this paper is to give an
essentially complete characterization of this ring, or at least to reduce the problem to
a matter of linear algebra. In particular, we find a proof of Newstead’s conjecture that
pg

1(Ng ) = 0. We also obtain a formula for the volume of Ng , which can be regarded
as a twisted version of the formula for the degree 0 moduli space recently announced
by Witten.

The approach we shall take is not from algebraic geometry but from mathematical
physics: it relies on the SU(2) Wess-Zumino-Witten model, which is a functor Zk

associating a finite-dimensional vector space to each Riemann surface with marked
points. The relationship with the moduli space is that when the “level” k of the
functor is even, the vector space associated to Σg with no marked points can be
identified with H0(Ng ;Lk/2), where L is a fixed line bundle over Ng . Now the work
of Verlinde provides us with a means of calculating the dimension of any vector space
arising from our functor, and in particular dimH0(Ng ;Lk/2), which we shall denote
D(g, k). On the other hand Newstead [14] found explicit generators for H∗(Ng ),
and we can also express D(g, k) in terms of them using a Riemann-Roch theorem.
Equating the two formulas enables us to evaluate any monomial in the generators on
the fundamental class of Ng , and by Poincaré duality this is sufficient, at least in
principle, to determine the ring structure of H∗(Ng ).

In the discussion above one important point has been skated over. The SU(2)
WZW model is of course associated to bundles of degree 0, not degree 1, so in order
to make use of Verlinde’s work it is necessary to formulate a “twisted” version of the
field theory. This is carried out in §2, but the crucial properties of the twisted theory,
analogous to those which make the ordinary theory a modular functor, are not proved
in this paper. Rather, we will confine ourselves to exploring the consequences of these
claims, and hope to return to justify them in a later paper.

An outline of the remaining sections goes as follows. In §3 we review those parts
of Verlinde’s work we shall need, show how they must be modified in the twisted case,
and work out some explicit formulas for D(g, k). In §4 we study the cohomology
of Ng , which we regard throughout as a space of representations via the theorem of
Narasimhan and Seshadri. We define Newstead’s generators α , β , and ψi of H∗(Ng )
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and, using Poincaré duality, show that the entire ring structure is determined by those
pairings of the form (αmβ nγ p)[Ng ] where γ = 2

∑
ψiψi+g . A further application of

Poincaré duality enables us to eliminate γ recursively from the pairings, so that we
need only evaluate (αmβ n)[Ng ] . This is calculated in §5 using the results of §3 and
the Hirzebruch-Riemann-Roch theorem. Finally we extract Newstead’s conjecture and
the volume formula from our results.

I am very grateful to Simon Donaldson for suggesting the basic approach and most
of the geometrical arguments, and to Graeme Segal for explaining Verlinde’s work.

2 The WZW model

We begin with a speedy review of the SU(2) Wess-Zumino-Witten model and its gluing
rules. The reader is referred to [6], [7], or [17] for a more leisurely account. We must
first fix a positive integer k , called the level. Let Σg be a compact connected Riemann
surface of genus g , with marked points x1, . . . , xp ∈ Σg . We choose a labelling of the
marked points, that is, we associate to each one an irreducible representation V of
SL(2,C) = SU(2)C with dimC V ≤ k+ 1. Such representations are determined up to
isomorphism by their dimension: we will write Vn for the representation of dimension
n+ 1, and denote by (Σg ;xi, ni) the Riemann surface with points xi labelled by Vni

.
To each such labelled Riemann surface we wish to associate a complex vector space
Zk (Σg ;xi, ni).

Let P be a smooth principal SL(2,C) bundle over Σg ; then P is unique up to
isomorphism, and the set A of compatible holomorphic structures on the associated
rank 2 vector bundle U is an affine space modelled on Ω0,1

C (Σg ; ad P ). There exists a
line bundle L→A whose fibre at any holomorphic structure is the determinant line
of the associated ∂ -operator on U . It is easy to see that the usual action of the gauge
group G = Γ(Ad P ) on A lifts to L , so we have an action of G on the tensor power
Lk . Next, at each marked point xi , choose an identification of the fibre (Ad P )xi

with SL(2,C). (Actually, Ad P always has a global trivialization in the present case,
so we may as well just use a restriction of that.) Then G also acts on each Vni

via
evaluation at the point xi . We may now define our vector space at level k as a space
of G -equivariant sections:

Zk (Σg ;xi, ni) = ΓG(Lk ⊗
⊗

i

Vni
).

If the genus g is at least 2, then the set As of semistable holomorphic structures
has complement of codimension at least 2 (see p. 569 of [1]), so we may regard
Zk (Σg ;xi, ni) as the space of holomorphic sections of the twisted quotient

Lk |As ⊗G
⊗

i

Vni
,

which is a vector bundle over the moduli space As/G of semistable SL(2,C) bundles
over Σg . However, some care is needed as the moduli space has singularities.

In fact, all we will really want to know about Zk (Σg ;xi, ni) is its dimension, which
we shall denote zk (Σg ;xi, ni). Now it is well known to physicists that Zk is an example
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of a modular functor. In particular, it satisfies the two propositions below, which have
important implications for the computation of zk (Σg ;xi, ni).

(1) Proposition. The value of zk (Σg ;xi, ni) is independent of the complex structure
on Σg .

Consequently, it is independent of the positions of the xi and of the trivializa-
tions of the fibres over them, because any two choices can be exchanged by a suitable
smooth map. Thus we will be justified in henceforth writing simply zk (Σg ;ni) for
zk (Σg ;xi, ni).

The second proposition gives two gluing axioms, which describe the behaviour of
zk under (i) the addition of a handle and (ii) connect-sum. In light of (1), we don’t
need to worry about the choice of complex structure.

(2) Proposition.

(i) zk (Σg+1;ni) =
k∑

n=0

zk (Σg ;n, n, ni).

(ii) zk (Σg+g′ ;ni, nj) =
k∑

n=0

zk (Σg ;n, ni) zk (Σg′ ;n, nj).

Proofs are essentially contained in [20]. 2

The definition of Zk given above is well known. However, as it stands the def-
inition involves SL(2,C) bundles over Σg , which are topologically trivial. Since we
are interested in non-trivial bundles over Σg , we shall need to modify and extend the
definition slightly. Fortunately, there is a straightforward way to do this. We consider
(Σg ;xi, ni) as before. Let P̂ be a smooth principal PSL(2,C) bundle over Σg with

w2(P̂ ) 6= 0; again, P̂ is unique up to isomorphism. The associated CP1 bundle lifts
to a rank 2 vector bundle Û of degree 1. Let Â denote the set of compatible holo-
morphic structures on Û which induce a fixed holomorphic structure ω on Λ2Û . (We
didn’t need to make this explicit in the untwisted case, because Λ2U is canonically
trivial.) As before we let L̂ be the determinant line bundle. However, we need to

be careful in our definition of the gauge group; we let Ĝ = Γ(Ãd P̂ ), where Ãd P̂ is
the adjoint bundle with fibre SL(2,C), not PSL(2,C). As in the untwisted case, we

choose identifications of (Ãd P̂ )xi
with SL(2,C), and define

Ẑk (Σg ;xi, ni) = ΓĜ(L̂
k
⊗
⊗

i

Vni
).

Again, we write ẑk (Σg ;xi, ni) = dim Ẑk (Σg ;xi, ni). In analogy with the properties of
zk discussed above, we propose the following.

(3) Claim. The value of ẑk (Σg ;xi, ni) is independent of the complex structure on
Σg .

Consequently, it is again independent of the positions of the xi and the trivializa-
tions of the fibres, as well as the choice of the holomorphic structure ω on Λ2Û . As
in the untwisted case, we shall henceforth write simply ẑk (Σg ;ni) for ẑk (Σg ;xi, ni).
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(4) Claim.

(i) ẑk (Σg+1;ni) =
k∑

n=0

ẑk (Σg ;n, n, ni).

(ii) ẑk (Σg+g′ ;ni, nj) =
k∑

n=0

ẑk (Σg ;n, ni) zk (Σg′ ;n, nj).

Despite their crucial importance for us, we will not attempt to prove these claims
here. However, it appears that the proofs of the analogous statements given by
Tsuchiya et al. [20] could be adapted to this case. To prove part (ii) of (2), for
example, they define a sheaf S over a local universal family of curves of genus g + g′

near a curve Σg ∨ Σg′ with an ordinary double crossing. The sheaf is so constructed
that its stalk over the generic smooth curve is

S|Σg+g′ = Zk (Σg+g′ ;ni, nj),

but over the singular curve is

S|Σg∨Σg′ =
k⊕

n=0

Zk (Σg ;n, ni)⊗ Zk (Σg′ ;n, nj).

The desired result is then obtained by showing that S is locally free. The key step in
adapting such a proof to the twisted case would be to note that there exists a principal
PSL(2,C) bundle P over the local universal family whose restriction to the generic
curve is twisted, but whose restriction to the singular curve Σg ∨ Σg′ is twisted over
Σg , but untwisted over Σg′ . Of course, similar reasoning would suggest that

zk (Σg+g′ ;ni, nj) =
k∑

n=0

ẑk (Σg ;n, ni) ẑk (Σg′ ;n, nj),(5)

and we shall see in the next section that this is indeed the case.

3 Some calculations

In one respect the twisted theory described above is simpler than the familiar untwisted
one: if the genus g is at least 2, then not only does the set Âs have complement of
codimension at least 2, as before, but now the moduli space Âs/Ĝ is known [19] to
be a compact complex manifold Ng . The section −I ∈ Ĝ now acts nontrivially on L̂
as well as the Vni

, so that L̂
k
⊗⊗Vni

descends to Ng if and only if k +
∑
ni is even.

When this is the case, we need have no qualms about identifying Ẑk (Σg ;ni) with the
space of holomorphic sections of a vector bundle over Ng . In particular, let L denote

the line bundle over Ng such that L̂
2

descends to L . Then if there are no marked
points at all, we have for even k

Ẑk (Σg ) = H0(Ng ;Lk/2).

This is the link which will enable us to use Ẑk to study the cohomology of Ng . Hence
our object in this section will be to give an explicit formula for ẑk (Σg ).
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From (4) we deduce

ẑk(Σg) =
∑
n

ẑk(Σg−1;n, n)

=
∑
m,n

zk(Σg−1;m,n) ẑk(Σ0;m,n),

where Σ0 is of course just the 2-sphere. Thus, provided we understand ẑk (Σ0 ;m,n),
we can reduce the computation of ẑk to the computation of zk , which is well understood
and which we shall now describe.

Following Verlinde [21], we define the coefficients

Nm1,m2,m3 = zk (Σ0 ;m1,m2,m3),

which are symmetric in all three indices. Define the (k + 1) × (k + 1) symmetric
matrices Nm by

(Nm)i,j = Nm,i,j.

Both here and in future we index the rows and columns starting with 0 instead of 1,
for convenience. We then obtain the following formula for the torus with two marked
points.

(6) Proposition. zk (Σ1;m1,m2) = tr Nm1Nm2 .

Proof.
zk(Σ1;m1,m2) =

∑
m

zk(Σ0;m,m,m1,m2)

=
∑
m,n

zk(Σ0;m,n,m1) zk(Σ0;m,n,m2)

=
∑
m,n

(Nm1)m,n(Nm2)n,m

= trNm1Nm2 .
2

Now define another (k + 1) × (k + 1) symmetric matrix M by (M)i,j = tr (NiNj).
This enables us to generalize the previous formula to arbitrary genus.

(7) Proposition. For g ≥ 1, zk (Σg ;m1,m2) = (M g)m1,m2 .

Proof by induction. Proposition (6) is the case g = 1. Then, if zk (Σg−1;m1,m2) =
(M g−1)m1,m2 , by attaching a handle we obtain

zk(Σg;m1,m2) =
∑
n

zk(Σg−1;m1, n) zk(Σ1;n,m2)

=
∑
n

(M g−1)m1,n(M)n,m2

= (M g)m1,m2 .
2

(8) Corollary. zk (Σg ) = trM g−1 .

Proof. zk (Σg ) =
∑
zk (Σg−1;m,m) =

∑
(M g−1)m,m = trM g−1 . 2

It is worth mentioning that the coefficients Nm1,m2,m3 can actually be calculated
explicitly:
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(9) Proposition.

Nm1,m2,m3 =

{
1 if |m1 −m2| ≤ m3 ≤ min(m1 +m2, k −m1 −m2) and m1 +m2 +m3 is even
0 otherwise.

The proof closest to our point of view appears in [7]; a fuller discussion can be found
in [8]. However, we shall not use the coefficients in this form, but rather make use of
the Verlinde conjecture, which states that the matrices Nm can be simultaneously
diagonalized. Let S be the (k + 1)× (k + 1) matrix such that

(S)ij =

√
2

k + 2
sin

(
(i+ 1)(j + 1)π

k + 2

)
.

Note that S is orthogonal and symmetric, so S = S−1 .

(10) Proposition.

SNmS = diag

(
(S)n,m

(S)0,m

)
.

Proofs are given in [2], [8], and [22]. 2

(11) Corollary.

SMS = diag

(
1

(S)2
0,m

)
.

Proof.
(SMS)i,j =

∑
m,n

(S)i,m tr (NmNn)(S)n,j

=
∑

m,n,p,q

(S)i,mNm,p,qNn,p,q(S)n,j

=
∑
p

(SN2
pS)i,j.

2

(12) Corollary.

zk (Σg ) =

(
k + 2

2

)g−1 k+1∑
m=1

1

(sin mπ
k+2

)2g−2
.

Proof. (8) and (11). 2

In order to find a similar formula for ẑk , as we said above, we need to understand
ẑk (Σ0 ;m1,m2). This can be computed directly.

(13) Proposition. ẑk (Σ0 ;m1,m2) = δm1+m2
k .

Proof. In this case the action of Ĝ on Â is well understood [1]. The orbits are
indexed by positive integers n ; Ân consists of those holomorphic structures which
are isomorphic to O(−n)⊕ O(n + 1). The complex codimension of Ân in Â is 2n .
In particular Â0 is a dense open orbit. Hence any equivariant section over Â0 will
extend over Â by the Hartogs theorem. That is,

Ẑk (Σ0 ;m1,m2) = ΓĜ(L̂k |Â0
⊗ Vm1 ⊗ Vm2).
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However, since Â0 is a single orbit of Ĝ , such an equivariant section is determined by
its value at a single fixed a ∈ Â0 . Conversely, any element of L̂k

a ⊗ Vm1 ⊗ Vm2 which
is fixed by Ĝa , the stabilizer of a , can be moved around by Ĝ to give an equivariant
section. Hence

Ẑk (Σ0 ,m1,m2) = ΓĜa
(L̂k

a ⊗ Vm1 ⊗ Vm2).(14)

Now Ĝa consists precisely of the ad P -compatible automorphisms of Û which are
holomorphic with respect to a . Since a ∈ Â0 this means that Ĝa is isomorphic to the
group of holomorphic automorphisms of O⊕O(1) having determinant 1 on each fibre.
If x1, x2 are our two marked points, we may choose a basis {s1, s2} of H0(Σ0 ; O(1))
such that s1 vanishes at x1 and s2 vanishes at x2 . Then we can write

Ĝa =

{(
z 0

y1s1 + y2s2 z−1

)
: z ∈ C×, yi ∈ C

}
,(15)

where the rows and columns of the matrix correspond to the decomposition O⊕O(1).
Now since H1(Σ0 ; O ⊕ O(1)) = 0, the fibre of the determinant line bundle L at

a is just
L2

a = Λ3H0((Σ0 ; O ⊕ O(1))∗.

A straightforward computation shows that, with respect to the presentation in (15),
an element of Ĝa acts on La by multiplication by z . On the other hand, for i = 1, 2,
the vanishing property of si at xi implies that, under an appropriate identification
of (Ãd P̂ )xi

with SL(2,C), Ĝa acts on Vni
via the homomorphism Ĝa −→ SL(2,C)

given by (
z 0

y1s1 + y2s2 z−1

)
7−→

(
z 0
yi z−1

)
.

Let us try to determine the right-hand side of (14) explicitly. Fix a nonzero t ∈ L̂k
a ;

then any element of L̂k
a ⊗ Vm1 ⊗ Vm2 is of course of the form t⊗ v for v ∈ Vm1 ⊗ Vm2 .

The 1-parameter subgroups{(
z 0
0 z−1

)
: z ∈ C×

}
and

{(
1 0
yisi 1

)
: yi ∈ C

}
for i = 1, 2

generate Ĝa , so for a section φ to be Ĝa -equivariant it is necessary and sufficient to

be equivariant with respect to each of these. Now we saw that

(
z 0
0 z−1

)
· t = zkt ,

so for equivariance we must have

(
z 0
0 z−1

)
· v = z−kv for that v such that φ(a) =

t ⊗ v . In infinitesimal terms, this means that v ∈ (Vm1 ⊗ Vm2)(−k), the −k -weight
space of Vm1 ⊗ Vm2 as a representation of the Lie algebra sl(2, C). A typical element(

1 0
y1s1 1

)
of the second subgroup acts trivially on L̂k

a and on Vm2 ; on Vm1 it acts

as

(
1 0
y1 1

)
∈ SL(2,C) . Hence for equivariance v must belong to Lm1 ⊗ Vm2 , where

Lm1 ⊂ Vm1 is the subspace on which

(
1 0
y1 1

)
acts trivially. Infinitesimalizing again
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we recognize Lm1 as the lowest weight space Vm1(−m1). In a similar way we deduce
v ∈ Vm1 ⊗ Vm2(−m2). Now since v determines φ , we can identify

ΓĜa
(L̂k

a ⊗ Vm1 ⊗ Vm2) = (Vm1 ⊗ Vm2)(−k) ∩ Vm1(−m1)⊗ Vm2 ∩ Vm1 ⊗ Vm2(−m2)

= (Vm1 ⊗ Vm2)(−k) ∩ Vm1(−m1)⊗ Vm2(−m2)

= (Vm1 ⊗ Vm2)(−k) ∩ (Vm1 ⊗ Vm2)(−m1 −m2),

which clearly has dimension δm1+m2
k , q.e.d. 2

(16) Corollary. ẑk (Σg ;m1,m2) = (M gJ)m1,m2 , where J is the (k + 1) × (k + 1)
matrix with (J)i,j = δi+j

k .

Proof. ẑk (Σg ;m1,m2) =
k∑

m=0

zk (Σg ;m1,m) ẑk (Σ0 ;m,m2); then use (7) and (13).

(In particular, this corollary proves (5), because J2 = I .) 2

(17) Corollary. For g ≥ 1, ẑk (Σg ) = t̃r M g−1 , where we define t̃r A =
k∑

i=0

(A)i,k−i .

Of course, this “twisted trace” is not preserved by the diagonalization, so to
actually evaluate ẑk we notice instead that J is also diagonalized by S ; in fact,
SJS = diag (−1)n . This gives us an analogue of (12).

(18) Corollary.

ẑk (Σg ) =

(
k + 2

2

)g−1 k+1∑
m=1

(−1)m+1

(sin mπ
k+2

)2g−2
.

2

This formula is the only result obtained so far which will be needed in the sequel.
Hence to simplify notation we will in future denote ẑk (Σg ) simply by D(g, k).

Although it is far from apparent from (18), for fixed g D(g, k) is a polynomial
in k with rational coefficients. We shall conclude this section by proving that. We
shall closely imitate similar calculations for the untwisted case which appear in an
unpublished letter by Don Zagier. Similar results have also been obtained by Dowker
[5].

(19) Proposition. For fixed g ≥ 2 and even k , D(g, k) equals the coefficient of
x3g−3 in the power series expansion of(

−k + 2

2
x

)g−1 (
x

sinh x

)2g−2 (k + 2)x

sinh(k + 2)x
.

Proof. We first rewrite (18) in terms of roots of unity:

D(g, k) = 1
2
(−2k − 4)g−1

∑
ζ2k+4=1

ζ 6=±1

−ζk+2

(ζ − ζ−1)2g−2
.
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Substituting ζ2 = λ , we get

D(g, k) = (−2k − 4)g−1
∑

λk+2=1
λ6=1

−λg−1λ(k+2)/2

(λ− 1)2g−2
.

Hence

D(g, k)

(−2k − 4)g−1
=

∑
λk+2=1

λ6=1

Resz=λ

[
−zg−1

(z − 1)2g−2

(k + 2)z(k+2)/2

zk+2 − 1

dz

z

]

= Resz=1

[
zg−1

(z − 1)2g−2

(k + 2)z(k+2)/2

zk+2 − 1

dz

z

]

for g ≥ 2 by the residue theorem, since then the only poles of the expression in square
brackets are at the (k+2)nd roots of unity. Substituting z = e2x in the final expression
gives

D(g, k)

(−2k − 4)g−1
= Resx=0

[(
1

2 sinh x

)2g−2 k + 2

sinh(k + 2)x
dx

]

=
coefficient
of x2g−2 in

1

22g−2

(
x

sinh x

)2g−2 (k + 2)x

sinh(k + 2)x
.

2

4 The cohomology of Ng

Let Σg be a Riemann surface of genus g ≥ 2. Fix a holomorphic line bundle Λ over Σg

of degree 1. Then the moduli space Ng of stable rank 2 holomorphic vector bundles
V over Σg with Λ2V = Λ is a compact complex 3g − 3-manifold. We wish to study
the structure of the rational cohomology ring H∗(Ng ). In §5, this will essentially be
determined completely using proposition (19). First, though, we need to review what is
already known about Ng , and to prove some necessary lemmas. A broader discussion
of some of the topics mentioned can be found in [1].

Roughly speaking, we wish to identify Ng as a space of representations of π1(Σg ).
So let us choose loops e1, e2, . . . , e2g on Σg which generate π1(Σg ) in the usual way,
so that

∏
eiei+ge

−1
i e−1

i+g ∼ 1. If we cut out a small disc D ⊂ Σg , then
∏
eiei+ge

−1
i e−1

i+g

is homotopic to the boundary circle of D , but is no longer contractible. Hence we lose
the relation, and π1(Σg −D) is the free group on the generators ei . Now consider the
map µ : SU(2)2g→ SU(2) defined by

(A1, A2, . . . , A2g) 7−→
g∏

i=1

AiAi+gA
−1
i A−1

i+g

and in particular the subspace Sg = µ−1(−I) ⊂ SU(2)2g . It can be shown [11] that
−I is a regular value of µ , so Sg is a smooth 6g−3-submanifold of SU(2)2g . We may
regard an element ω ∈ Sg as a representation of π1(Σg − D) sending the boundary
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circle to −I . It must be irreducible, since if it were reducible to an abelian subgroup, it
would send the boundary circle to I . Such a representation gives us a flat connection
on an SU(2) bundle over Σg −D having holonomy −I around D . By passing to the
associated rank 2 vector bundle and gluing in a fixed twisted unitary connection over
D , we can extend our flat connection ω to a connection on a unitary vector bundle
V →Σg of degree 1. Then the (0, 1) part of the associated covariant derivative is
a Cauchy-Riemann operator which induces a holomorphic structure on V . Now the
diagonal conjugation action of SU(2)/± 1 = SO(3) on SU(2)2g clearly preserves Sg ,
and by Schur’s lemma the restriction of the action is free. Hence the quotient Sg/SO(3)
is a smooth 6g− 6-manifold. But if two representations in Sg are conjugate, then the
induced connections on V are isomorphic, and hence so are the holomorphic structures.
Hence to each point in Sg/SO(3) we can associate an isomorphism class of holomorphic
bundles over Σg . In this context, the celebrated theorem of Narasimhan and Seshadri
[18] can be stated as follows.

(20) Theorem. All the holomorphic bundles constructed in this manner are stable,
and the resulting map φ : Sg/SO(3) −→ Ng is a diffeomorphism. 2

Remark. We will in future identify Ng with Sg/SO(3) . Under this identification,

any diffeomorphism f : Σg →Σg induces a diffeomorphism f̂ : Ng →Ng . (To be
precise, we should require that f preserves a small neighbourhood of the disc D ; but
this is not a serious restriction, as any diffeomorphism of Σg is isotopic to one of this
form.)

To obtain distinguished cohomology classes in Ng , we construct a vector bundle
U over Ng × Σg , as follows. Let Σ̃g be the universal cover of Σg , and consider the
twisted quotient

Σ̃g ×π1(Σg) (Sg × sl(2, C)).

The action on the right-hand factor is given by h(ρ, v) = (ρ, ad ρ(h) · v), where we
regard ρ ∈ Sg as determining an SO(3)-representation of π1(Σg ). This gives us
a vector bundle over Sg × Σg ; to see that it descends to Ng × Σg , note that the
conjugation action of SO(3) on Sg lifts to an action on this twisted quotient, given by

T · (s× (ρ, v)) = (s× (TρT−1, ad T · v)).

The resulting vector bundle U is clearly natural in the sense that, for any diffeomor-
phism f : Σg →Σg , we have ( f̂ × f)∗(U ) ∼= U . (In fact, it is also universal, that
is, it has a connection in the fibre direction whose restriction to {ω} × Σg is isomor-
phic to ad ω . It is even possible to perform a similar construction in the holomorphic
setting—for details see [1].) Because Ng is simply connected [13], we may write

c2(U ) = −2ασ + β − 4ψ,

where σ denotes the fundamental class in H2(Σg ) and

α ∈ H2(Ng ); β ∈ H4(Ng ); ψ ∈ H3(Ng )⊗H1(Σg ).

10



(The scalar factors are inserted to agree with the conventions of [14].) The Poincaré
duals of our loops ei form a basis e1, e2, . . . , e2g of H1(Σg ,Z); using this, we can
decompose

ψ =
2g∑
i=1

ψie
i,

where ψi ∈ H3(Ng ). We can now state the following crucial result.

(21) Theorem (Newstead). The ring H∗(Ng ) is generated by α, β , and the ψi . 2

Remark. Atiyah and Bott [1] later showed that the integral cohomology H∗(Ng ,Z)
is torsion-free, so that rational multiples of the same classes generate the integral
cohomology. Moreover, the ψi are actually integral generators of H3(Ng ,Z), a fact
which we will be needing later.

Since we have a set of generators, to determine the ring structure completely it
suffices to find the relations. The usual commutation relations hold, so this amounts
to deciding for which nonnegative integers mj, nj, pi,j we have∑

j

αmj β nj(
∏
i

ψ
pi,j

i ) = 0.(22)

But according to Poincaré duality, µ ∈ Hm(Ng ) = 0 if and only if µν = 0 for all
ν ∈ H6g−6−m(Ng ). Hence in principle to decide when equality holds in (22) we need
only evaluate the integers

αmβ n(
∏
i

ψpi
i )[Ng ](23)

for those m,n, pi such that

2m+ 4n+ 3
∑

i

pi = 6g − 6.

A more general discussion of these top-dimensional pairings, and of their analogues in
four dimensions, can be found in [4]. Our goal will be to find an explicit formula for
(23).

The first thing to notice is the following.

(24) Proposition. Let 1 ≤ i0 ≤ g . If pi0 > 1, or if pi0 6= pi0+g , then the pairing in
(23) is zero.

Proof. The first part is easy, since the commutation relations imply ψ2
i0

= 0. This
only leaves the case pi0 + pi0+g = 1 for the second part. Now if f : Σg →Σg is an
orientation-preserving diffeomorphism, then by naturality

f̂ ∗ (α)m f̂ ∗ (β )n(
∏
i

f̂ ∗ (ψi)
pi)[Ng ] = αmβ n(

∏
i

ψpi
i )[Ng ].

However, since ( f̂ × f)∗U ∼= U , we have

f̂ ∗ (α) = α, f̂ ∗ (β ) = β ,
∑

i

f̂ ∗ (ψi)f
∗(ei) =

∑
i

ψie
i.

11



Now it is easy to find a diffeomorphism of Σg such that f ∗(ei0) = −ei0 , f ∗(ei0+g) =
−ei0+g , but f ∗(ei) = ei for all other i . For example, a half twist of the surface in
Figure 1 below the loop labelled has the desired properties. If pi0 + pi0+g = 1, we
conclude

αmβ n(
∏
i

ψpi
i )[Ng ] = −αmβ n(

∏
i

ψpi
i )[Ng ] = 0.

2

For 1 ≤ i ≤ g , define γi = ψiψi+g . Then the proposition above shows that all the
pairings (23) are zero except those of the form

(αmβ nγi1γi2 . . . γip)[Ng ](25)

where m + 2n + 3p = 3g − 3 and 1 ≤ i1 < i2 < · · · < ip ≤ g . Actually, the value of
(25) is independent of the choice of ij . This follows from a diffeomorphism argument
similar to that in the proof of (24), because any permutation of the handles in figure
1 can be realized by a diffeomorphism. Consequently, any pairing of the form (25) is
equal to (g − p)!/(2pg!) times the even simpler expression

(αmβ nγ p)[Ng ],

where γ = 2
∑g

i=1 γi . The class γ has the advantage of being independent of our
choice of basis {ei} , since ψ2 = γ σ .

Still using the identification Ng = Sg/SO(3) , we can perform another construction
that would not have made sense in the holomorphic setting. The map from Σg to
Σg−1 which collapses the ith handle to a point (see figure 2) is not holomorphic, but it
induces an embedding ηi : Ng−1→Ng . The image of this embedding consists precisely

of those conjugacy classes of representations of π1(Σ̂g) which send the generators ei

and ei+g to the identity. That is, ηi(Ng−1) = p(π−1
i (I) ∩ π−1

i+g(I)), where πi is the

restriction to Sg of the projection of SU(2)2g on the ith factor, and p is the quotient
map Sg→Ng . Since dimR Ng = 6g − 6, Ng−1 has real codimension 6.

(26) Proposition. ηi(Ng−1) is Poincaré dual to γi . Consequently,

αmβ nγ p[Ng ] = 2g αmβ nγ p−1[Ng−1].

Proof. If we fix an element (A1, A2, . . . , A2g−2) ∈ Sg−1 , then the map SU(2)→Sg

given by
T 7−→ (A1, . . . , Ai−1, T, Ai, . . . , Ai+g−1, T

−1, Ai+g, . . . , A2g−2)

is a right inverse for πi . There is a similar right inverse for πi+g . Hence the pullbacks
by πi and πi+g of the fundamental cohomology class of SU(2) are indivisible classes
χi, χi+g ∈ H3(Sg,Z), Poincaré dual to π−1

i (I) and π−1
i+g(I) respectively. We claim that

χi = ±p∗(ψi) and χi+g = ±p∗(ψi+g).
To prove this, note that π−1

i (I) is a union of fibres of the SU(2)-action on Sg , so

χi = p∗(ψ̂i) for some ψ̂i ∈ H3(Ng ,Z). This ψ̂i is unique, because we can see from
the Leray-Serre spectral sequence (or even the Gysin sequence) that the natural map
H3(Ng ,Z)→H3(Sg,Z) is injective. Now for any ej in our basis for H1(Σg ,Z) with
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j 6= i , there exist diffeomorphisms f : Σg →Σg such that f ∗(ei) = ei but f ∗(ej) 6= ej :
the Dehn twists and half twists in figure 3 do the trick. Thus the only classes in
H3(Ng ,Z) which are invariant under f ∗ for all such f are the integer multiples of

ψi . But χi is invariant under such f ∗ by construction, and hence so is ψ̂i . Hence by
the second part of (21), ψ̂i is an integer multiple of ψi . Since both ψi and ψ̂i are
indivisible, we must have ψ̂i = ±ψi . Likewise, ψ̂i+g = ±ψi+g .

We shall not bother to pin down the sign, because for our purposes it is sufficient
to note that the same sign holds for ψ̂i and ψ̂i+g . This can be deduced from a diffeo-
morphism argument like the one above, using a Dehn twist that induces ei 7→ ei+g and
ei+g 7→ −ei (see figure 4). Then χiχi+g = p∗(γi ), and so descending to Ng we obtain
the first result.

As for the second, it is sufficient to show that η∗(α) = α , η∗(β ) = β , and
η∗(γ ) = γ . This is straightforward from the construction of U . 2

We can use this proposition recursively to eliminate γ from the pairings. (Actually,
to bootstrap we do need to know that γ [N2] = 4, but this follows from Poincaré
duality.) Hence it now suffices to evaluate αmβ n[Ng ] when m + 2n = 3g − 3. This
will be carried out in the next section.

5 A formula for the pairings

So far, we have practically ignored the complex structure on Σg , and the complex
structure it induces on Ng . In this section we shall use that complex structure, to-
gether with what we already know, to calculate (αmβ nγ p)[Ng ] . Recall that in §3,
we gave a formula for D(g, k) = dimH0(Ng ;Lk/2), where L was a positive line bun-
dle over Ng , and k was an even number. However, instead of the approach we took
through mathematical physics, we could have gone through algebraic geometry, using
the Hirzebruch-Riemann-Roch theorem. This tells us that∑

i

(−1)i dimH i(Ng ;Lk/2) = (chLk/2 td Ng )[Ng ].(27)

Since the canonical bundle of Ng is negative [14], the left-hand side equals D(g, k) by
Kodaira vanishing. On the other hand, we can calculate the right-hand side in terms
of α and β . Newstead [14] showed that c1(Ng ) = 2α and p(Ng ) = (1 + β )2g−2 . By
restricting L to a projective subspace of Ng as in [14], it is not hard to show that
c1(L) = α . As for td Ng , the identity

x

1− e−x
= exp( 1

2
x)

1
2
x

sinh 1
2
x

implies (see p. 117 of [16]) that, if yi are the Pontrjagin roots,

td = exp( 1
2
c1)

∏
i

1
2

√
yi

sinh 1
2

√
yi

.

Noting that 2g − 2 of the Pontrjagin roots of Ng are β and the rest are 0, we obtain

td Ng = exp(α)

(
1
2

√
β

sinh 1
2

√
β

)2g−2

.
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Then by (27)

D(g, k) =

exp

(
k + 2

2
α

)(
1
2

√
β

sinh 1
2

√
β

)2g−2
 [Ng ](28)

for even k . For fixed g , this is a polynomial in k whose coefficients involve the pairings.
On the other hand, our original formula (19) is likewise a polynomial in k . Substituting
` = k + 2 in (19) and (28), and equating coefficients of `m , we get

−(− 1
2
)g−1 (2m−g+1−2)

(m−g+1)! Bm−g+1 P3g−3−m = 1
m! 23g−3 P3g−3−m(αmβ

1
2
(3g−3−m))[Ng ],

where Bi is the ith Bernoulli number and Pi is the coefficient of xi in the power
series expansion of (x/ sinh x)2g−2 . (We use the conventions under which B2 = 1/6,
B4 = −1/30, etc., and we interpret Bi = 0 if i < 0, because (k + 2)x/ sinh(k + 2)x
has no pole at 0.) Cancelling P3g−3−m and rearranging, we obtain

(αmβ n)[Ng ] = (−1)g−1 m!
(m−g+1)! 22g−2 (2m−g+1 − 2)Bm−g+1.(29)

In particular, we get the volume formula:

vol Ng = 1
(3g−3)! α

3g−3[Ng ] = 1
(2g−2)! 22g−2 (22g−2 − 2) |B2g−2|.

Finally, we combine (29) with (26) to obtain, for m+ 2n+ 3p = 3g − 3,

(αmβ nγ p)[Ng ] = (−1)p−g m!
(m+p−g+1)!

g!
(g−p)! 22g−2−p (2m+p−g+1 − 2)Bm+p−g+1.

This agrees with the results published for genus 2 [13] and 3 [15]. For example,
the number 224 obtained by Ramanan is just α6[N3] . It also enables us to prove
Newstead’s conjecture that β g = 0. This conjecture first appeared in [14] and is
discussed at greater length in [1]; there is no proof in the literature, but Frances Kirwan
[12] has recently found a proof using equivariant cohomology. In any case, though, it is
manifest from our formula, since n > g−1 implies m+p−g+1 < 0. Indeed, we get the
more general and unsuspected result that β g−qγ q = 0 whenever 0 ≤ q ≤ g . However,
Newstead’s other conjecture, proved by Gieseker [9], that cr(Ng ) = 0 for r > 2g − 2,
is not at all obvious from this equation, since we don’t know of a systematic way to
compute the Chern classes in terms of α , β , γ .

It was promised in the introduction that the determination of the ring structure
would be reduced to a problem in linear algebra, and this ought to be explained.
To compute the relations in any degree q , we construct a matrix whose columns are
indexed by the monomials in α , β , ψi of total degree q and whose rows are indexed
by similar monomials of complementary total degree 6g − 6 − q . The matrix entry
at row µ , column ν is given by µν[Ng ] , as determined from the formula above and
(24). The rank of this matrix is just the q th Betti number of Ng . (To prove that this
rank agrees with the formula for the Betti number given in [1] could be regarded as
a hard exercise in number theory.) Finding the relations at degree q is equivalent to
finding a basis for the null space of this matrix. Such a basis could be obtained by
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row-reduction, but without any short cuts this would be prohibitively cumbersome.
Luckily, though, for many applications, such as those employing the Riemann-Roch
theorem, the top-dimensional pairings are exactly what we need.

Note added in proof. Since this paper was written, Don Zagier has solved the prob-
lem posed in the last paragraph, to give a complete set of explicit relations between
Newstead’s generators.

References

[1] M.F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos.
Trans. Roy. Soc. London Ser. A 308 (1982) 523–615.

[2] R. Dijkgraaf and E. Verlinde, Modular invariance and the fusion algebra, Nucl.
Phys. B (Proc. Suppl.) 5B (1988) 87–97.

[3] R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology,
Commun. Math. Phys. 129 (1990) 393–429.

[4] S.K. Donaldson, Instantons in Yang-Mills theory, in The interface of mathematics
and particle physics, ed. D.G. Quillen, G.B. Segal, and Tsou S.T. (Oxford, 1990).

[5] J.S. Dowker, Heat kernel expansion on a generalized cone, J. Math. Phys. 30 (1989)
770–773.
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