# Mathematics W4061y <br> Differentiable Manifolds 

Answers to Practice Midterm

March 12, 2014

1. Suppose $W \subset \mathbf{R}^{n} \times \mathbf{R}^{m}$ is open, $f: W \rightarrow \mathbf{R}^{m}$ is $C^{1}$ in a neighborhood of $(a, b)$, $f(a, b)=0$, and the $m \times m$ matrix with $i, j$ entry $\left(\partial f_{i} / \partial x_{n+j}\right)(a, b)$ is invertible. Then there exist open $U \subset \mathbf{R}^{n}$ and $V \subset \mathbf{R}^{m}$ and a $C^{1}$ function $g: U \rightarrow V$ such that $(a, b) \in U \times V \subset W$ and, for all $(x, y) \in U \times V, f(x, y)=0$ if and only if $y=g(x)$.
2. Alt $T\left(v_{1}, \ldots, v_{n}\right)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{sgn} \sigma T\left(v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right)$.
3. If $\psi_{1}: V_{1} \rightarrow M \cap U_{1}$ and $\psi_{2}: V_{2} \rightarrow M \cap U_{2}$ are two charts for $M$, the overlap map between them is $\psi_{1}^{-1} \circ \psi_{2}: \psi_{2}^{-1}\left(U_{1}\right) \rightarrow \psi_{1}^{-1}\left(U_{2}\right)$. It is a smooth diffeomorphism of open sets in $\mathbf{R}^{k}$.
4. This is linear since $T_{A+B}(u, v)=u^{t}(A+B) v=u^{t} A v+u^{t} B v=T_{A}(u, v)+T_{B}(u, v)$ and $T_{x A}=u^{t}(x A) v=x\left(u^{t} A v\right)=x T_{A}(u, v)$ for $A, B \in M_{n \times n}$ and $x \in \mathbf{R}$. It is injective since $T_{A}=0$ implies $0=T_{A}\left(e_{i}, e_{j}\right)=e_{i}^{t} A e_{j}=A_{i, j}$ for all $i, j$, hence $A=0$. Since domain and range both have dimension $n^{2}$, it is an isomorphism.
Extra credit: the skew-symmetric matrices correspond to alternating tensors, since $A=-A^{t}$ implies $T_{A}(v, u)=v^{t} A u=\left(v^{t} A u\right)^{t}=u^{t} A^{t} v=-u^{t} A v=T(u, v)$ and, conversely, if $T_{A}$ is alternating, then $A_{j, i}=e_{j}^{t} A e_{i}=T_{A}\left(e_{j}, e_{i}\right)=-T_{A}\left(e_{i}, e_{j}\right)=-e_{i}^{t} A e_{j}=$ $-A_{i, j}$.
5. Let $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be $f(x, y, z)=\left(x^{2}+y^{2}-3 z^{2}-2 x,-x^{2}-y^{2}+z^{2}-1\right)$. Then the set in question is $M=f^{-1}(0,0)$, and the Jacobian matrix is

$$
f^{\prime}(x, y, z)=\left(\begin{array}{crr}
2 x-2 & 2 y & -6 z \\
-2 x & -2 y & 2 z
\end{array}\right) .
$$

It suffices to show that, for all $(x, y, z) \in M$, this has rank 2 . If not, then all columns are multiples of a single vector, so the determinants of $2 \times 2$ minors vanish. Hence $0=(2 x-2)(-2 y)-(2 y)(-2 x)=4 y$, so $y=0$, and $0=(2 x-2)(2 z)-(-6 z)(-2 x)=$ $-4 z-8 x z$, so $z=0$ or $x=-1 / 2$. In the former case the right-hand equation becomes $-x^{2}=1$, which is impossible, and in the latter case the two equations sum to $-2 z^{2}=0$, so $z=0$, returning us to the former case.
6. If $f: M \rightarrow N$ is a diffeomorphism with inverse $g: N \rightarrow M$ and with $f(x)=y$, then $f \circ g=\mathrm{id}_{N}$, so by the chain rule for manifolds, $D f(x) \circ D g(y)=D \mathrm{id}_{N}=\mathrm{id}: T_{y} N \rightarrow$ $T_{y} N$. Similarly $D g(y) \circ D f(x)=\mathrm{id}: T_{x} M \rightarrow T_{x} M$, so the two tangent spaces are isomorphic, so they have the same dimension. But a manifold has the same dimension as its tangent spaces.
7. A manifold of dimension 0 in $\mathbf{R}^{n}$ is discrete, and a manifold of dimension $n$ in $\mathbf{R}^{n}$ is open. Since $M$ is neither, it could only be a manifold of dimension 1. But the intersection of $M$ with any open rectangular neighborhood of $(0,0)$ fails both the vertical line test and the horizontal line test, so it isn't a graph of a function of either of the two variables. Hence $M$ is not a manifold.

