Mathematics W4061y
 Differentiable Manifolds

Practice Midterm Exam

March 12, 2014
PART I: Statements and definitions (10 pts each).

1. Briefly and precisely state the implicit function theorem.
2. Define Alt $T\left(v_{1}, \ldots, v_{n}\right)$, where $T: V \times \cdots \times V \rightarrow \mathbf{R}$ is an n-tensor.
3. Carefully define the overlap map between two charts of a manifold, and name a significant property that it satisfies.

PART II: Proofs and calculations (15 pts each).
4. Let $M_{n \times n}$ denote the vector space of $n \times n$ matrices with real entries.

For $A \in M_{n \times n}$, let $T_{A} \in \otimes^{2}\left(\mathbf{R}^{n}\right)^{*}$ be defined by $T_{A}(u, v)=u^{t} A v$, where u^{t} is the transpose of u.
Show that the map taking A to T_{A} is a linear isomorphism $M_{n \times n} \rightarrow \otimes^{2}\left(\mathbf{R}^{n}\right)^{*}$.
[Extra credit: what subspace of $M_{n \times n}$ corresponds to alternating tensors?]
5. Show that the set of points in \mathbf{R}^{3} satisfying the equations

$$
x^{2}+y^{2}-3 z^{2}=2 x \text { and }-x^{2}-y^{2}+z^{2}=1
$$

is a 1 -manifold.
6. Prove that if two manifolds are diffeomorphic, then they have the same dimension.
7. Let M be the union of the x-axis and the y-axis in \mathbf{R}^{2}. Is it a manifold? Either prove that it is or prove that it isn't. If it is, what is its dimension?

