Mathematics W4061y Differentiable Manifolds

Practice Midterm Exam March 12, 2014

PART I: Statements and definitions (10 pts each).

- 1. Briefly and precisely state the *implicit function theorem*.
- **2.** Define Alt $T(v_1, \ldots, v_n)$, where $T: V \times \cdots \times V \to \mathbf{R}$ is an *n*-tensor.
- **3.** Carefully define the *overlap map* between two charts of a manifold, and name a significant property that it satisfies.

PART II: Proofs and calculations (15 pts each).

- 4. Let M_{n×n} denote the vector space of n×n matrices with real entries.
 For A ∈ M_{n×n}, let T_A ∈ ⊗²(ℝⁿ)* be defined by T_A(u, v) = u^tAv, where u^t is the transpose of u.
 Show that the map taking A to T_A is a linear isomorphism M_{n×n} → ⊗²(ℝⁿ)*.
 [Extra credit: what subspace of M_{n×n} corresponds to alternating tensors?]
- 5. Show that the set of points in \mathbb{R}^3 satisfying the equations

$$x^{2} + y^{2} - 3z^{2} = 2x$$
 and $-x^{2} - y^{2} + z^{2} = 1$

is a 1-manifold.

- 6. Prove that if two manifolds are diffeomorphic, then they have the same dimension.
- 7. Let M be the union of the x-axis and the y-axis in \mathbb{R}^2 . Is it a manifold? Either prove that it is or prove that it isn't. If it is, what is its dimension?