Mathematics W4061y
 Differentiable Manifolds

Answers to Practice Final

May 12, 2014

1. The tensor product is defined by $\phi \otimes \psi\left(v_{1}, \ldots, v_{k+\ell}\right)=\phi\left(v_{1}, \ldots, v_{k}\right) \psi\left(v_{k+1}, \ldots, v_{k+\ell}\right)$.
2. Yes. We proved in class that if $f: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ is smooth and $D f(x)$ is surjective for all $x \in f^{-1}(c)$, then $f^{-1}(c)$ is a manifold of dimension $m-n$. In this case, $f(A)=\operatorname{det} A=a d-b c$ with the usual coordinates. The Jacobian matrix is therefore $(d-c-b a)$, which cannot be 0 if $a d-b c=1$. It therefore defines a surjection $\mathbf{R}^{4} \rightarrow \mathbf{R}$, so $S L(2)$ is a manifold of dimension 3 .
Extra credit: expanding $\operatorname{det} A$ along the i th row and differentiating with respect to $a_{i, j}$ shows that $\frac{\partial \text { det }}{\partial a_{i, j}}(A)$ equals \pm the i, j minor of A. By Cramer's rule, these cannot all vanish for A invertible, so the Jacobian again defines a surjection $\mathbf{R}^{n^{2}} \rightarrow \mathbf{R}$, making $S L(n)$ a manifold of dimension $n^{2}-1$.
3. Consider the smooth map $f:\left(\rho_{-}, \rho_{+}\right) \times\left(\phi_{-}, \phi_{+}\right) \times\left(\theta_{-}, \theta_{+}\right) \rightarrow S$ given by $f(\rho, \phi, \theta)=$ $(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$. Since its Jacobian determinant is

$$
\left|\begin{array}{ccc}
\sin \phi \cos \theta & \sin \phi \sin \theta & \cos \phi \\
\rho \cos \phi \cos \theta & \rho \cos \phi \sin \theta & -\rho \sin \phi \\
-\rho \sin \phi \sin \theta & \rho \sin \phi \cos \theta & 0
\end{array}\right|=\rho^{2} \sin \phi>0
$$

f is a local diffeomorphism by the inverse function theorem. Because of the descriptions of ρ, ϕ, θ, it is also injective, hence a diffeomorphism. By change of variables and Fubini,

$$
\begin{aligned}
\int_{S} 1 & =\int_{\rho_{-}}^{\rho_{+}} \int_{\phi_{-}}^{\phi_{+}} \int_{\theta_{-}}^{\theta_{+}}|\operatorname{det} D f| d \rho d \phi d \theta \\
& =\int_{\rho_{-}}^{\rho_{+}} \rho^{2} d \rho \int_{\phi_{-}}^{\phi_{+}} \sin \phi d \phi \int_{\theta_{-}}^{\theta_{+}} d \theta \\
& =\left(\rho_{+}^{3}-\rho_{-}^{3}\right)\left(\cos \phi_{-}-\cos \phi_{+}\right)\left(\theta_{+}-\theta_{-}\right) / 3
\end{aligned}
$$

4. (a) Both sides are bilinear in ω and η, so it suffices to take $\omega(x)=f(x) d x_{I}$ and $\eta(x)=g(x) d x_{J}$. Then

$$
\begin{aligned}
d(\omega \wedge \eta) & =\sum_{k=1}^{n} \frac{\partial(f g)}{\partial x_{k}} d x_{k} \wedge d x_{I} \wedge d x_{J} \\
& =\sum_{k=1}^{n}\left(\frac{\partial f}{\partial x_{k}} g+f \frac{\partial g}{\partial x_{k}}\right) d x_{k} \wedge d x_{I} \wedge d x_{J} \\
& =\sum_{k=1}^{n} \frac{\partial f}{\partial x_{k}} g d x_{k} \wedge d x_{I} \wedge d x_{J}+(-1)^{p} \sum_{k=1}^{n} f \frac{\partial g}{\partial x_{k}} d x_{I} \wedge d x_{k} \wedge d x_{J} \\
& =\left(\sum_{k=1}^{n} \frac{\partial f}{\partial x_{k}} d x_{k} \wedge d x_{I}\right) \wedge g d x_{J}+(-1)^{p} f d x_{I} \wedge\left(\sum_{k=1}^{n} \frac{\partial g}{\partial x_{k}} d x_{k} \wedge d x_{J}\right) \\
& =d \omega \wedge \eta+(-1)^{p} \omega \wedge d \eta
\end{aligned}
$$

(b) Using (a) twice,

$$
\begin{aligned}
d(\omega \wedge \eta \wedge \nu) & =d(\omega \wedge \eta) \wedge \nu+(-1)^{p+q} \omega \wedge \eta \wedge d \nu \\
& =d \omega \wedge \eta \wedge \nu+(-1)^{p} \omega \wedge d \eta \wedge \nu+(-1)^{p+q} \omega \wedge \eta \wedge d \nu
\end{aligned}
$$

5. If $\omega=f(x) d x_{1} \cdots d x_{m}$ and $\eta=g(y) d y_{1} \cdots d y_{n}$ are smooth forms supported in rectangles $A \subset \mathbf{R}^{m}$ and $B \subset \mathbf{R}^{n}$ respectively, then by Fubini

$$
\int_{A \times B} \pi_{1}^{*} \omega \times \pi_{2}^{*} \eta=\int_{A \times B} f(x) g(y) d x d y=\int_{A} f(x) d x \int_{B} g(y) d y=\int_{A} \omega \int_{B} \eta .
$$

Now choose oriented atlases ψ_{α} and $\tilde{\psi}_{\beta}$ for M and N respectively, and choose partitions of unity ϕ_{α} and $\tilde{\phi}_{\beta}$ subordinate to them. Then $\psi_{\alpha} \times \tilde{\psi}_{\beta}$ is an oriented atlas for $M \times N$ with subordinate partition of unity $\pi_{1}^{*} \phi_{\alpha} \pi_{2}^{*} \tilde{\phi}_{\beta}$, and

$$
\begin{aligned}
\int_{M \times N} \pi_{1}^{*} \mu \wedge \pi_{2}^{*} \nu & =\sum_{\alpha, \beta} \int_{V_{\alpha} \times \tilde{V}_{\beta}}\left(\psi_{\alpha} \times \tilde{\psi}_{\beta}\right)^{*}\left(\pi_{1}^{*}\left(\phi_{\alpha} \mu\right) \wedge \pi_{2}^{*}\left(\tilde{\phi}_{\beta} \nu\right)\right) \\
& =\left(\sum_{\alpha} \int_{V_{\alpha}} \psi_{\alpha}^{*} \phi_{\alpha} \mu\right)\left(\sum_{\beta} \int_{\tilde{V}_{\beta}} \tilde{\psi}_{\beta}^{*} \tilde{\phi}_{\beta} \nu\right) \\
& =\int_{M} \mu \int_{N} \nu
\end{aligned}
$$

6. (a) It is well defined since if $[\omega]=[\tilde{\omega}] \in H^{k}(U)$, then $\omega-\tilde{\omega}=d \eta$ and $\int_{M} \omega-\int_{M} \tilde{\omega}=$ $\int_{M} d \eta=\int_{\partial M} \eta=0$ by Stokes.
(b) If $M=\partial N$, then by Stokes again $\int_{M} \omega=\int_{\partial N} \omega=\int_{N} d \omega=0$ since ω is closed.
7. This means that $U=V \times \mathbf{R}^{2}$ where $V=U \cap(\mathbf{R} \times 0 \times 0)$ is an open set in \mathbf{R}. Hence $H^{2}(U)=H^{2}\left(V \times \mathbf{R}^{2}\right) \cong H^{2}(V)=0$ since all 2-forms on an open set in \mathbf{R} are zero.
8. Since $d g^{*} \eta=g^{*} d \eta=0, g^{*} \eta$ is closed. By the Poincaré lemma, it is exact, say $g^{*} \eta=d \nu$. Then $h^{*} \eta=f^{*} g^{*} \eta=f^{*} d \nu=d f^{*} \nu$ is exact too.
9. If h is not surjective, missing some $p \in S^{n}$, then its image is contained in $S^{n} \backslash p$ for some p. Now there is a diffeomorphism $g: \mathbf{R}^{n} \rightarrow S^{n} \backslash p$ given by rotation and stereographic projection; then $f=g^{-1} \circ h$ is also well defined and smooth, and $h=g \circ f$. Since any $\eta \in \Omega^{n}\left(S^{n}\right)$ is closed, $h^{*} \eta$ is exact by 8 . Then by Stokes $\int_{M} h^{*} \eta=0$.
10. Since $d(\omega-\eta)=0 \in \Omega^{2}\left(\mathbf{R}^{n}\right)$, by the Poincaré lemma $\omega-\eta=d f$ for some $f \in \Omega^{0}\left(\mathbf{R}^{n}\right)$. If C and D have initial point \vec{a} and terminal point \vec{b}, then by the fundamental theorem of line integrals (aka Stokes again),

$$
\int_{C} \omega-\eta=f(\vec{b})-f(\vec{a})=\int_{D} \omega-\eta .
$$

Another approach is to apply Stokes to a surface bounded by C and D : morally correct, but technically tricky since the surface may have corners at \vec{a} and \vec{b}.

