Mathematics W4061y
 Differentiable Manifolds

Practice Final Exam

May 12, 2014

Hint: problems may be useful in solving other problems.
Manifolds are without boundary unless otherwise stated.

1. Define the tensor product $\phi \otimes \psi \in T^{k+\ell} V$ of two tensors $\phi \in T^{k} V$ and $\psi \in T^{\ell} V$.
2. Let $S L(2)=\left\{A \in M_{2 \times 2} \mid \operatorname{det} A=1\right\}$. Is it a manifold? Either prove that it is or prove that it isn't. If it is, what is its dimension? Extra credit: same question for $S L(n)$.
3. Recall that the spherical coordinates (ρ, ϕ, θ) of a vector $\vec{v} \in \mathbf{R}^{3}$ are determined by the formula

$$
(x, y, z)=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) .
$$

Here ρ is the length of $\vec{v} ; \phi$ is its angle with the vertical; and θ is the angle that its projection onto the horizontal makes with the positive x-axis.
Fix intervals $\left(\rho_{-}, \rho_{+}\right) \subset[0, \infty),\left(\phi_{-}, \phi_{+}\right) \subset[0, \pi]$, and $\left(\theta_{-}, \theta_{+}\right) \subset[0,2 \pi]$. Let $S \subset \mathbf{R}^{3}$ be the bounded open set consisting of points \vec{v} whose spherical coordinates (ρ, ϕ, θ) lie in these three intervals, respectively. Use the change of variables formula to compute the volume of S, that is, $\int_{S} 1$. Hint: the Jacobian determinant simplifies dramatically.
4. (a) For $U \subset \mathbf{R}^{n}$ open, $\omega \in \Omega^{p}(U)$, and $\eta \in \Omega^{q}(U)$, prove that

$$
d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{p} \omega \wedge d \eta
$$

(b) If $\nu \in \Omega^{r}(U)$ as well, state and prove a similar formula for $d(\omega \wedge \eta \wedge \nu)$.
5. If $M \subset \mathbf{R}^{m}$ and $N \subset \mathbf{R}^{n}$ are compact oriented manifolds of dimensions k and ℓ respectively, $\mu \in \Omega^{k}\left(\mathbf{R}^{m}\right)$, and $\nu \in \Omega^{\ell}\left(\mathbf{R}^{n}\right)$, prove that

$$
\int_{M \times N} \pi_{1}^{*} \mu \wedge \pi_{2}^{*} \nu=\int_{M} \mu \int_{N} \nu
$$

6. (a) If $U \subset \mathbf{R}^{n}$ is open and $M \subset U$ is a compact oriented manifold of dimension k, prove that the linear functional $\int_{M}: H^{k}(U) \rightarrow \mathbf{R}$ is well defined.
(b) If $M=\partial N$ for some compact oriented N, prove that this functional is zero.
7. Suppose $U \subset \mathbf{R}^{3}$ is any open set such that whenever $(x, y, z) \in U$ and $s, t \in \mathbf{R}$, then $(x, y+s, z+t)$ is also in U. Compute the de Rham cohomology $H^{2}(U)$.
8. Suppose M and N are manifolds, and suppose a smooth map $h: M \rightarrow N$ may be expressed as $h=g \circ f$ for some smooth $f: M \rightarrow \mathbf{R}^{k}$ and $g: \mathbf{R}^{k} \rightarrow N$. Prove that if $\eta \in \Omega^{i}(N)$ is closed for $i>0$, then $h^{*} \eta$ is exact.
9. We proved that there exists $\eta \in \Omega^{n}\left(S^{n}\right)$ such that $\int_{S^{n}} \eta \neq 0$. If M is a compact oriented manifold of dimension $n>0$ and $h: M \rightarrow S^{n}$ is smooth but not surjective, prove that $\int_{M} h^{*} \eta=0$.
10. Say $\omega, \eta \in \Omega^{1}\left(\mathbf{R}^{n}\right)$ satisfy $d \omega=d \eta$, and C, D are compact connected parametric curves (i.e. 1-dimensional manifolds with boundary) having the same initial and terminal points. Show that

$$
\int_{C} \omega+\int_{D} \eta=\int_{D} \omega+\int_{C} \eta .
$$

