Mathematics W4061y Differentiable Manifolds

Answers to Midterm Exam March 12, 2014

1. A tensor is a map $F: V^k \to \mathbf{R}$ such that, for each *i* between 1 and *k*,

 $F(v_1, \dots, v_{i-1}, tv_i + t'v'_i, v_{i+1}, \dots, v_k) = tF(v_1, \dots, v_i, \dots, v_k) + t'F(v_1, \dots, v'_i, \dots, v_k).$

It is *alternating* if for all i between 1 and k - 1,

$$F(v_1, \ldots, v_i, v_{i+1}, \ldots, v_k) = -F(v_1, \ldots, v_{i+1}, v_i, \ldots, v_k).$$

- **2.** Let $B = \{x \in \mathbb{R}^n \mid |x| \leq 1\}$, let $K \in [0, 1)$, and suppose $f : B \to B$ satisfies $|f(x) f(y)| \leq K|x y|$ for all $x, y \in B$. Then there exists a unique $x \in B$ such that f(x) = x.
- **3.** For any chart $\psi: V \to M \cap U$ with $p \in M \cap U$, the *tangent space* at p is im $D_{\psi^{-1}(p)}\psi$. (This does not depend on ψ .)
- 4. Let e^1, \ldots, e^n be a basis for V^* . Then $\omega = \sum_{i=1}^n a_i e^1 \wedge \cdots \wedge \hat{e}^i \wedge \cdots \wedge e^n$ with not all $a_i = 0$. Choose j so that $a_j \neq 0$ and let $\mu = e^j$; then $\omega \wedge \mu = a_j e^1 \wedge \cdots \wedge \hat{e}^j \wedge \cdots \wedge e^n \wedge e^j = (-1)^{n-j}a_j e^1 \wedge \cdots \wedge e^n \neq 0$.
- 5. It cannot. If there were an inverse k, then $id = k \circ g \circ h$ and hence, by the chain rule for manifolds, $id = D_{f(p)}k \circ D_{h(p)}g \circ D_ph : T_pM \to T_pM$. But D_ph , as a linear map from a 7-dimensional tangent space to a 5-dimensional tangent space, cannot be injective, so it cannot be invertible.
- 6. Let P be a partition of A and let S be a subrectangle of P. Since for all $x \in S$ we have $f(x) \leq g(x)$, any lower bound for f(S) is a lower bound for g(S), so $\inf f(S) \leq \inf g(S)$. Hence $\underline{I}(f, P) = \sum_{S} \inf f(S) \operatorname{vol} S \leq \sum_{S} \inf g(S) \operatorname{vol} S = \underline{I}(g, P)$; taking suprema over all partitions P (and reasoning as before with upper bounds), we find $\int_A f = \underline{I}(f) = \sup\{\underline{I}(f, P) \mid P \text{ partition}\} \leq \sup\{\underline{I}(g, P) \mid P \text{ partition}\} = \underline{I}(g) = \int_A g.$
- 7. The smooth map F_1 taking $(x, y) \mapsto (r, \theta) = (\sqrt{x^2 + y^2}, \arctan(y/x))$ maps $U \to (0, \infty) \times (0, \pi/2)$ with smooth inverse $(r, \theta) \mapsto (r \cos \theta, r \sin \theta)$, and the smooth map F_2 taking $(r, \theta) \mapsto (r g(\theta), \theta)$ maps $(0, \infty) \times (0, \pi/2) \to V = \{(r, \theta) \in (0, \infty) \times (0, \pi/2) | r > -g(\theta)\}$ with smooth inverse $(r, \theta) \mapsto (r + g(\theta), \theta)$. Then $F_2 \circ F_1 : U \to V$ is a diffeomorphism of open sets and $S = (F_2 \circ F_1)^{-1}(0 \times \mathbf{R})$.