Mathematics W4081y Differentiable Manifolds

Assignment #9

Due April 14, 2014

In Spivak, do problem 4–19ab. Also do the following.

- 1. Compute the exterior derivative of the following forms. Remember, a hat means that the term is omitted.
 - (a) $e^{xyz}dx$
 - (b) $\sum_{i=1}^{n} x_i^2 dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_n$
 - (c) $||x||^p \sum_{i=1}^n (-1)^{i+1} x_i dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_n$, where p is a real constant. Be sure to simplify your answer.
- **2.** Let $f : \mathbf{R}^3 \to \mathbf{R}^3$ be $f(r, \phi, \theta) = (r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi)$, the map taking spherical coordinates to rectangular coordinates (x, y, z). Compute the pullback $f^*\alpha$ for the following forms α : (a) dx, (b) dy, (c) dz, (d) $dy \wedge dz$, (e) $dx \wedge dy \wedge dz$.
- **3.** Let B_{ϵ}^n denote the *n*-dimensional ball $B_{\epsilon}(0) \subset \mathbf{R}^n$.
 - (a) Let $\lambda_n = \text{vol } B_1^n$; use change of variables to prove that vol $B_{\epsilon}^n = \epsilon^n \lambda_n$.
 - (b) Compute λ_1 and λ_2 .
 - (c) Compute λ_n in terms of λ_{n-2} .

(d) Obtain a general formula for λ_n . Hint: divide into two cases according as n is even or odd.

- 4. Let $\eta = v \, du u \, dv \in \Omega^1(\mathbf{R}^2)$ and let $\omega = 3u \, du \wedge dv \in \Omega^2(\mathbf{R}^2)$. Also let $f : \mathbf{R}^3 \to \mathbf{R}^2$ be $f(x, y, z) = (x^2 y, x^2 z)$.
 - (a) By an explicit computation of both sides, verify directly that $f^*d\eta = d f^*\eta$.
 - (b) By an explicit computation of both sides, verify directly that $f^*(\eta \wedge \omega) = f^*\eta \wedge f^*\omega$.
- 5. Let U ⊂ Rⁿ be open and let Ω*(U) = ⊕_{p=0}[∞] Ω^p(U). Prove that the exterior derivative is the unique linear map d : Ω*(U) → Ω*(U) satisfying the following properties:
 (i) d(Ω^p(U)) ⊂ Ω^{p+1}(U);
 (ii) d(ω ∧ η) = dω ∧ η + (-1)^pω ∧ dη for ω ∈ Ω^p(U) and η ∈ Ω^q(U);
 - (iii) $df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n$ for $f \in \Omega^0(U)$;
 - (iv) $d \circ d = 0$.