Mathematics W4081y
 Differentiable Manifolds

Assignment \#6

Due March 24, 2014

1. The orthogonal group. (20 pts) Let $M(n)=M_{n \times n}$ denote the set of $n \times n$ matrices with real entries; let $S(n)$ denote the subset consisting of symmetric matrices, that is, $S(n)=\left\{A \in M(n) \mid A^{T}=A\right\}$; and let $O(n)$ denote the subset consisting of orthogonal matrices, that is, $O(n)=\left\{A \in M(n) \mid A^{T} A=I\right\}$. This exercise will outline a proof that $O(n)$ is a manifold of dimension $n(n-1) / 2$.
(a) Note that $M(n)$ is a vector space of dimension n^{2}, hence isomorphic to $\mathbf{R}^{n^{2}}$. Show that $S(n)$ is a linear subspace of dimension $1+2+3+\cdots+n=n(n+1) / 2$.
(b) Define $f: M(n) \rightarrow S(n)$ by $f(A)=A^{T} A$. Show that f is smooth and $O(n)=$ $f^{-1}(I)$.
(c) Given $A, B \in M(n)$, prove that $D f(A)(B)=B^{T} A+A^{T} B \in S(n)$. Hint: consider a suitable parametric curve through A and use the chain rule.
(d) Show that, if $A \in O(n)$, then $D f(A)$ is surjective. Hint: to solve $X^{T} A+A^{T} X=C$ when C is symmetric, write $C=\frac{1}{2} C+\frac{1}{2} C^{T}$.
(e) Prove that $O(n)$ is a manifold of dimension $n(n-1) / 2$.
2. Prove that the tangent space to $O(n)$ at the identity matrix I is the vector space $K(n)$ of all skew-symmetric $n \times n$ real matrices, that is, $K(n)=\left\{A \in M(n) \mid A^{T}=-A\right\}$.
3. Let M be a smooth manifold. For any tangent vector $v \in T_{p} M$, show there exists $\epsilon>0$ and a regular parametric $\gamma:(-\epsilon, \epsilon) \rightarrow M$ such that $\gamma^{\prime}(0)=v$.
4. Recall that a topological space M is connected if the only subsets that are both closed and open are M and \varnothing. Prove that if a manifold M is connected, then any two points $p, q \in M$ are joined by a piecewise regular parametric curve: that is, there exist regular parametric curves $\gamma_{i}:\left[a_{i}, b_{i}\right] \rightarrow M$ with $\gamma_{1}\left(a_{1}\right)=p, \gamma_{r}\left(b_{r}\right)=q$, and $\gamma_{i}\left(b_{i}\right)=\gamma_{i+1}\left(a_{i}\right)$. Hint: fix p and consider the set of q joined to p by a prpc.
5. State a "slice" definition of a k-dimensional manifold with boundary, that is, a definition analogous to the definition of a manifold as a subset $M \subset \mathbf{R}^{n}$ such that every $p \in$ M has a neighborhood $U \subset \mathbf{R}^{n}$ and a diffeomorphism of open sets $F: U \rightarrow V \subset \mathbf{R}^{n}$ satisfying $F^{-1}\left(\mathbf{R}^{k} \times 0\right)=M \cap U$. Prove that it is equivalent to the "chart" definition of a manifold with boundary given in class.
6. Prove that the closed unit ball $B=\left\{x \in \mathbf{R}^{n}| | x \mid \leq 1\right\}$ is a manifold with boundary.
7. If $\gamma:[a, b] \rightarrow \mathbf{R}^{n}$ is smooth and injective with $\gamma^{\prime}(t) \neq 0$ for all $t \in[a, b]$, prove that its image is a 1 -dimensional manifold with boundary. (So no 6 -figures in this case.)
