Mathematics W4081y Differentiable Manifolds

Assignment #5

Due March 3, 2014

1. Let $f: \mathbf{R}^3 \to \mathbf{R}^2$ be C^1 . Assume that f(3, -1, 2) = 0 and that

$$D_{(3,-1,2)}f = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

(a) Show there is a C^1 function $g: U \to \mathbf{R}^2$ defined on an open $U \subset \mathbf{R}$ containing 3 such that $f(x, g_1(x), g_2(x)) = 0$ for all $x \in U$, and g(3) = (-1, 2).

(b) Find g'(3).

(c) Discuss the problem of solving f(x, y, z) = 0 for an arbitrary pair of the unknowns in terms of the third near the point (3, -1, 2).

2. Let $f : \mathbf{R}^n \to \mathbf{R}^m$ be C^1 with f(a) = 0 and suppose that $D_a f$ is surjective. Show that if c is a point of \mathbf{R}^m sufficiently close to 0, then the equation f(x) = c has a solution.

In the remaining exercises, all manifolds are assumed to be smooth, that is, C^{∞} .

- **3.** Prove that open subsets $U \subset \mathbf{R}^n$ and $V \subset \mathbf{R}^m$ are manifolds of dimension n and m, respectively, and that a map $f: U \to V$ is smooth in the classical sense if and only if it is smooth as a map of manifolds.
- 4. More generally, if $M \subset \mathbf{R}^n$ is a manifold of dimension k and $U \subset \mathbf{R}^n$ is open, prove that $M \cap U$ is a manifold of dimension k.
- 5. Prove that any manifold of dimension n in \mathbb{R}^n is an open subset.
- 6. Prove that $\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n | x \cdot y = 0, |x| |y| = 1\}$ is a manifold. What is its dimension?
- 7. Exercise 5–6 in Spivak is incorrect as stated. Give a proof of one direction and a counterexample to the other.
- 8. Exercise 5–7 in Spivak is also incorrectly stated. Do the corrected version, as follows. Let $\mathbf{K}^n = \{x \in \mathbf{R}^n | x_1 = 0 \text{ and } x_2 > 0\}$. If $M \subset \mathbf{K}^n$ is a k-dimensional manifold and N is obtained by rotating M around the axis $x_1 = x_2 = 0$ while leaving other variables fixed, show that N is a (k + 1)-dimensional manifold. Use this to give another proof that the torus is a 2-dimensional manifold.
- **9.** Let $M \subset \mathbf{R}^n$ be a k-dimensional manifold. Prove that the *cone*

$$C = \{(t, tx) \in \mathbf{R}^{n+1} \, | \, t > 0, x \in M\}$$

is a (k+1)-dimensional manifold. Sketch an example where M is a curve in the plane. (Style tip: index the coordinates in \mathbb{R}^{n+1} from 0 to n.)