Mathematics W4081y
 Differentiable Manifolds

Assignment \#3

Due February 17, 2014
In Spivak, do the following problems.
$1-10,2-1,2-4,2-6,2-7,2-11,2-13,2-16$.

Notes: In 2-4, the function g need not be continuous (which we haven't yet defined for functions on the unit circle anyway).

Spivak's notation differs somewhat from ours. He denotes the partial derivative $\partial f / \partial x_{i}$ by $D_{i} f$ and the total derivative $D_{a} f$ by $D f(a)$. He uses a distinct notation for the Jacobian matrix, denoting it by $f^{\prime}(a)$. According to our convention, linear maps $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ are identified with matrices in $M_{m \times n}$, so the Jacobian of a differentiable $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is identified with the total derivative $D_{a} f$.

