Let V be a vector space with basis e_1, \ldots, e_n, and let V^* have the dual basis e^1, \ldots, e^n.

1. (20 pts) A 2-tensor $f \in \bigotimes^2 V^*$ is said to be symmetric if for all $x, y \in V$, $f(x, y) = f(y, x)$.

 (a) Show that the set $S^2 V^*$ of all symmetric tensors is a linear subspace of $\bigotimes^2 V^*$.
 (b) What is a basis for $S^2 V^*$ in terms of a basis e_1, \ldots, e_n for V and the dual basis e^1, \ldots, e^n for V^*? What is dim $S^2 V^*$? Hint: try $V = \mathbb{R}^2$ to get a feeling.
 (c) Define a linear map $\text{Sym}: \bigotimes^2 V^* \to S^2 V^*$ similar to Alt and prove that its restriction to $S^2 V^*$ is the identity.
 (d) Prove that $\text{Sym} \oplus \text{Alt}: \bigotimes^2 V^* \to S^2 V^* \oplus \Lambda^2 V^*$ is an isomorphism.
 (e) Define a linear map $M_{n \times n} \to \bigotimes^2 \mathbb{R}^n$, show it is an isomorphism, and show that it takes the symmetric and anti-symmetric matrices to $S^2 V^*$ and $\Lambda^2 V^*$, respectively.
 (f) Note that any inner product on V is an element of $S^2 V^*$. Show that the set $C \subset S^2 V^*$ consisting of inner products is a cone in the sense that $f, g \in C$, $a, b \in \mathbb{R}$, and $a, b > 0$ imply $af + bg \in C$.
 (g) Sketch this cone in the case $V = \mathbb{R}^2$.

2. If $i_1, \ldots, i_k \in \{1, \ldots, n\}$ are distinct, show that

 \[
 \text{Alt}(e^{i_1} \otimes \ldots \otimes e^{i_k})(e_{j_1}, \ldots, e_{j_k}) = \begin{cases}
 0 & \text{if } j_1, \ldots, j_k \text{ is not a reordering of } i_1, \ldots, i_k \\
 \frac{1}{k!} \text{sgn } \sigma & \text{if each } j_\ell = i_{\sigma(\ell)} \text{ for some } \sigma \in S_k
 \end{cases}
 \]

3. If $1 \leq i_1 < i_2 < \cdots < i_k \leq n$, prove that for any k-tuple u_1, \ldots, u_k of vectors in V, with $u_j = \sum u_{ij} e_i$, the number $e^{i_1} \wedge \cdots \wedge e^{i_k}(u_1, \ldots, u_k)$ is the determinant of the $k \times k$ matrix obtained by selecting rows i_1, \ldots, i_k from the $n \times k$ matrix $U = (u_{ij})$.

4. More generally, if $\alpha_1, \ldots, \alpha_k \in V^*$, prove that

 \[
 \alpha_1 \wedge \cdots \wedge \alpha_k(u_1, \ldots, u_k) = \text{det}(\alpha_1(u_j)).
 \]

5. Prove that $\{e^{i_1} \wedge \cdots \wedge e^{i_k} | 1 \leq i_1 < i_2 < \cdots < i_k \leq n\}$ is a linearly independent set in $\Lambda^k V^*$.

6. Prove that the wedge product is the unique binary operation $\Lambda^k V^* \times \Lambda^\ell V^* \to \Lambda^{k+\ell} V^*$ satisfying the following properties:

 (i) Linearity: $(\omega_1 + \omega_2) \wedge \eta = \omega_1 \wedge \eta + \omega_2 \wedge \eta$ and $(t\omega) \wedge \eta = t(\omega \wedge \eta)$
 (ii) Anti-commutativity: $\omega \wedge \eta = (-1)^{kl}\eta \wedge \omega$
 (iii) Associativity: $(\omega \wedge \eta) \wedge \xi = \omega \wedge (\eta \wedge \xi)$
 (iv) If $\alpha_1, \ldots, \alpha_k \in \Lambda^1 V^* = V^*$ and $u_1, \ldots, u_k \in V$, then

 \[
 \alpha_1 \wedge \cdots \wedge \alpha_k(u_1, \ldots, u_k) = \text{det}(\alpha_i(u_j)).
 \]