Mathematics W4081y
 Differentiable Manifolds

Assignment \#2

Due February 10, 2014
Let V be a vector space with basis e_{1}, \ldots, e_{n}, and let V^{*} have the dual basis e^{1}, \ldots, e^{n}.

1. (20 pts) A 2-tensor $f \in \bigotimes^{2} V^{*}$ is said to be symmetric if for all $x, y \in V, f(x, y)=$ $f(y, x)$.
(a) Show that the set $S^{2} V^{*}$ of all symmetric tensors is a linear subspace of $\otimes^{2} V^{*}$.
(b) What is a basis for $S^{2} V^{*}$ in terms of a basis e_{1}, \ldots, e_{n} for V and the dual basis e^{1}, \ldots, e^{n} for V^{*} ? What is $\operatorname{dim} S^{2} V^{*}$? Hint: try $V=\mathbf{R}^{2}$ to get a feeling.
(c) Define a linear map Sym: $\bigotimes^{2} V^{*} \rightarrow S^{2} V^{*}$ similar to Alt and prove that its restriction to $S^{2} V^{*}$ is the identity.
(d) Prove that Sym \oplus Alt: $\bigotimes^{2} V^{*} \rightarrow S^{2} V^{*} \oplus \Lambda^{2} V^{*}$ is an isomorphism.
(e) Define a linear map $M_{n \times n} \rightarrow \bigotimes^{2} \mathbf{R}^{n}$, show it is an isomorphism, and show that it takes the symmetric and anti-symmetric matrices to $S^{2} V^{*}$ and $\Lambda^{2} V^{*}$, respectively.
(f) Note that any inner product on V is an element of $S^{2} V^{*}$. Show that the set $C \subset S^{2} V^{*}$ consisting of inner products is a cone in the sense that $f, g \in C, a, b \in \mathbf{R}$, and $a, b>0$ imply $a f+b g \in C$.
(g) Sketch this cone in the case $V=\mathbf{R}^{2}$.
2. If $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$ are distinct, show that

$$
\operatorname{Alt}\left(e^{i_{1}} \otimes \ldots e^{i_{k}}\right)\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)= \begin{cases}0 & \text { if } j_{1}, \ldots, j_{k} \text { is not a reordering of } i_{1}, \ldots, i_{k} \\ \frac{1}{k!} \operatorname{sgn} \sigma & \text { if each } j_{\ell}=i_{\sigma(\ell)} \text { for some } \sigma \in S_{k}\end{cases}
$$

3. If $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, prove that for any k-tuple u_{1}, \ldots, u_{k} of vectors in V, with $u_{j}=\sum u_{i j} e_{i}$, the number $e^{i_{1}} \wedge \cdots \wedge e^{i_{k}}\left(u_{1}, \ldots, u_{k}\right)$ is the determinant of the $k \times k$ matrix obtained by selecting rows i_{1}, \ldots, i_{k} from the $n \times k$ matrix $U=\left(u_{i j}\right)$.
4. More generally, if $\alpha_{1}, \ldots, \alpha_{k} \in V^{*}$, prove that

$$
\alpha_{1} \wedge \cdots \wedge \alpha_{k}\left(u_{1}, \ldots, u_{k}\right)=\operatorname{det}\left(\alpha_{i}\left(u_{j}\right)\right)
$$

5. Prove that $\left\{e^{i_{1}} \wedge \cdots \wedge e^{i_{k}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n\right\}$ is a linearly independent set in $\Lambda^{k} V^{*}$.
6. Prove that the wedge product is the unique binary operation $\Lambda^{k} V^{*} \times \Lambda^{\ell} V^{*} \rightarrow \Lambda^{k+\ell} V^{*}$ satisfying the following properties:
(i) Linearity: $\left(\omega_{1}+\omega_{2}\right) \wedge \eta=\omega_{1} \wedge \eta+\omega_{2} \wedge \eta$ and $(t \omega) \wedge \eta=t(\omega \wedge \eta)$
(ii) Anti-commutativity: $\omega \wedge \eta=(-1)^{k \ell} \eta \wedge \omega$
(iii) Associativity: $(\omega \wedge \eta) \wedge \xi=\omega \wedge(\eta \wedge \xi)$
(iv) If $\alpha_{1}, \ldots, \alpha_{k} \in \Lambda^{1} V^{*}=V^{*}$ and $u_{1}, \ldots, u_{k} \in V$, then

$$
\alpha_{1} \wedge \cdots \wedge \alpha_{k}\left(u_{1}, \ldots, u_{k}\right)=\operatorname{det}\left(\alpha_{i}\left(u_{j}\right)\right)
$$

