1. If M, N are compact oriented manifolds, $f, g : M \to N$ are (smoothly) homotopic, and $\omega \in \Omega^p(N)$ is closed, show that
 $$\int_M f^* \omega = \int_M g^* \omega.$$

2. Use de Rham cohomology to prove that $\mathbb{R}^2 \setminus 0$ is not diffeomorphic to a contractible open subset of \mathbb{R}^2.

3. Let $M \subset \mathbb{R}^n$ be a manifold, $\{\psi_\alpha : V_\alpha \to M \cap U_\alpha \mid \alpha \in A\}$ an atlas, $V_{\alpha\beta} = \psi_\alpha^{-1}(U_\beta)$, and $f_{\alpha\beta} = \psi_\alpha^{-1} \circ \psi_\beta : V_\beta \to V_\alpha$. Recall that $\Omega^p(M)$ was defined in class as the subset of $\prod_{\alpha \in A} \Omega^p(V_\alpha)$ consisting of forms ω_α such that $\omega_\alpha|_{V_{\alpha\beta}} = f_{\alpha\beta}^* \omega_\beta$.
 (a) Let $S = \{\omega \in \Omega^p(\mathbb{R}^n) \mid \text{for all } x \in M \text{ and } v_1, \ldots, v_p \in T_x M, \omega(v_1, \ldots, v_p) = 0\}$. Prove that there is a natural isomorphism $\Omega^p(\mathbb{R}^n)/S \cong \Omega^p(M)$ and use a partition of unity to show that it is surjective.
 (b) Show that the definition of $\Omega^p(M)$ given in class does not depend on the atlas.

4. Let $F : \mathbb{R} \to S^1 \subset \mathbb{R}^2$ be $F(t) = (\cos t, \sin t)$.
 (a) Carefully show that the image of $F^* : \Omega^0(S^1) \to \Omega^0(\mathbb{R})$ is
 $$\{f(t) \in \Omega^0(\mathbb{R}) \mid f(t + 2\pi) = f(t)\},$$
 and that the image of $F^* : \Omega^1(S^1) \to \Omega^1(\mathbb{R})$ is
 $$\{g(t) dt \in \Omega^1(\mathbb{R}) \mid g(t + 2\pi) = g(t)\}.$$
 Hint: use the previous problem and a judicious choice of atlas on S^1.
 (b) Use this to prove that $H^1(S^1) \cong \mathbb{R}$.

5. Stereographic projection.
 Let \mathbb{R}^{n+1} have coordinates (x_0, \ldots, x_n), and let $S^n = \{\vec{x} \in \mathbb{R}^{n+1} \mid \|\vec{x}\| = 1\}$.
 (a) For any $\vec{y} \neq \vec{e}_0 \in S^n$, find a formula for the unique point \vec{z} on the line through \vec{y} and \vec{e}_0 and on the plane $x_0 = 0$. Draw a picture.
 (b) Carefully show that $S^n \setminus \{\vec{e}_0\}$ is diffeomorphic to \mathbb{R}^n.
 (c) Show also that $S^n \setminus \{\pm \vec{e}_0\}$ is diffeomorphic to $S^{n-1} \times \mathbb{R}$.