Mathematics W4081y
 Differentiable Manifolds

Assignment \#10

Due April 21, 2014

1. If $X \subset \mathbf{R}^{m}$ and $Y \subset \mathbf{R}^{n}$ are orientable manifolds, prove that $X \times Y \subset \mathbf{R}^{m+n}$ is too.
2. Prove that the cylinder $\left\{(x, y, z) \in \mathbf{R}^{3} \mid x^{2}+y^{2}=1,-1<z<1\right\}$ is orientable.
3. (a) If a k-dimensional manifold $M \subset \mathbf{R}^{n}$ is oriented, prove that there exist an open $U \supset M$ and a form $\omega \in \Omega^{k}(U)$ such that for every oriented chart $\psi_{\alpha}: V_{\alpha} \rightarrow U_{\alpha} \cap M$, we have $\psi_{\alpha}^{*} \omega=f(x) d x_{1} \wedge \cdots \wedge d x_{k}$ with $f(x)>0$ for all $x \in V_{\alpha}$.
Hint: show that, after shrinking U_{α} and V_{α} if necessary, each chart may be extended to a diffeomorphism $V_{\alpha} \times W_{\alpha} \rightarrow U_{\alpha}$; let $U=\bigcup_{\alpha} U_{\alpha}$ and add up suitable forms using a partition of unity.
(b) If a k-dimensional manifold $M \subset \mathbf{R}^{n}$ is oriented, prove that there exist an open $U \supset M$ and a form $\omega \in \Omega^{k}(U)$ such that for every chart $\psi_{\alpha}: V_{\alpha} \rightarrow U_{\alpha} \cap M$ whatsoever, we have $\psi_{\alpha}^{*} \omega=f(x) d x_{1} \wedge \cdots \wedge d x_{k}$ with $f(x) \neq 0$ for all $x \in V_{\alpha}$.
4. (a) Explain why the Möbius strip M is the image of $f: \mathbf{R} \times(-1,1) \rightarrow \mathbf{R}^{3}$ given by

$$
f(t, u)=(2 \cos 2 t, 2 \sin 2 t, 0)+u(\cos 2 t \cos t, \sin 2 t \cos t, \sin t)
$$

(b) Describe an atlas for M given by restricting f to open subsets.
5. Prove that the Möbius strip is not orientable.

Hint: pull back a suitable form by f.
6. Let $M \subset \mathbf{R}^{m}$ and $N \subset \mathbf{R}^{n}$ be compact oriented manifolds of dimensions k and ℓ, respectively, and let $\omega \in \Omega^{k}\left(\mathbf{R}^{m}\right)$ and $\eta \in \Omega^{\ell}\left(\mathbf{R}^{n}\right)$ be differential forms. If π_{1} : $\mathbf{R}^{m+n} \rightarrow \mathbf{R}^{m}$ and $\pi_{2}: \mathbf{R}^{m+n} \rightarrow \mathbf{R}^{n}$ are projection on the first and last factors, prove that

$$
\int_{M \times N} \pi_{1}^{*} \omega \wedge \pi_{2}^{*} \eta=\int_{M} \omega \int_{N} \eta
$$

when $M \times N$ is suitably oriented. Also show that, if ω and η are forms of any other degree, then the left-hand side vanishes.
7. If $f: M \rightarrow N$ is an oriented diffeomorphism of oriented n-dimensional manifolds, and if ω is a differential n-form defined on an open neighborhood of N, prove that

$$
\int_{M} f^{*} \omega=\int_{N} \omega
$$

