Mathematics W4081y
 Differentiable Manifolds

Assignment \#1

Due Monday, February 3, 2013

1. Prove that if $W \subset V$ are finite-dimensional vector spaces of the same dimension, then $W=V$.
2. (Contraction to a basis) If v_{1}, \ldots, v_{n} spans V, prove that it contains a basis.
3. If V is a vector space and $v_{1}, \ldots, v_{n} \in V$, prove that any two of the following imply the third: (i) $n=\operatorname{dim} V$; (ii) v_{1}, \ldots, v_{n} span V; (iii) v_{1}, \ldots, v_{n} are linearly independent.
4. Let V be a finite-dimensional vector space with an inner product. Show that $v \mapsto\langle, v\rangle$ defines an isomorphism $V \rightarrow V^{*}$.
5. (a) Let U be the vector space consisting of all continuous functions $[0,1] \rightarrow \mathbf{R}$. Prove that $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$ defines an inner product on U.
(b) Show that $f \mapsto f(1 / 2)$ defines an element of the dual space U^{*} that is not given by $f \mapsto\langle f, g\rangle$ for any $g \in U$.
(c) Show that the linear map $G: U \rightarrow U^{*}$ given by $g \mapsto\langle, g\rangle$ is injective but not surjective.
6. Let V be a vector space with bases u_{1}, u_{2} and v_{1}, v_{2} related by $u_{1}=a v_{1}+c v_{2}$ and $u_{2}=b v_{1}+d v_{2}$. Show that the dual bases of V^{*} are related by $v^{1}=a u^{1}+b u^{2}$ and $v^{2}=c u^{1}+d u^{2}$. Show that the isomorphisms $V \rightarrow V^{*}$ given by $u_{i} \mapsto u^{i}$ and $v_{i} \mapsto v^{i}$ are distinct unless $A^{T} A=I$ where $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and I is the identity matrix. In other words, the isomorphism $V \rightarrow V^{*}$ depends on the choice of basis.
7. Prove that $\operatorname{det} A=\operatorname{det} A^{T}$ using the formula stated in class:

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}} \operatorname{sgn} \sigma \prod_{i=1}^{n} a_{i, \sigma(i)}
$$

(Here sgn σ, the sign of a permutation σ, is defined to be 1 or -1 depending whether σ is a composition of an even or an odd number of transpositions. It is well-defined.)
8. (a) If $S, T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ are linear maps with $S \circ T=\mathrm{id}$, prove that $T \circ S=\mathrm{id}$ too. Hint: use rank-nullity.
(b) If $A, B \in M_{n \times n}(\mathbf{R})$ are matrices with $A B=I$, then $B A=I$ too. Hint: composition of linear maps corresponds to matrix multiplication (which you may assume).
9. A sequence $v_{1}, \ldots, v_{m} \in \mathbf{R}^{n}$ is said to be orthonormal if $v_{i} \cdot v_{j}=\delta_{i j}$, the Kronecker delta. Prove that an orthonormal sequence of n vectors in \mathbf{R}^{n} is a basis.
10. (a) If the rows of a matrix $A \in M_{n \times n}(\mathbf{R})$ form an orthonormal sequence, prove that the columns do too.
(b) Prove that such a matrix has determinant ± 1.

