1. We put the examples in reduced row echelon form:

\[
\begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \Rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \quad \text{So, rank} = 5
\]

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 5 \\
\end{pmatrix} \Rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix} \quad \text{So, again, rank} = 5
\]

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 \\
\end{pmatrix} \Rightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \quad \text{So, the rank is} \ 1
\]

2. This is true. One way to see this is to note that A and $2A$ have the same reduced row echelon form.

3. a) e.g. $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $B = -A$

b) e.g. $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

c) e.g. $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

d) Your best guess would be: No.
4. $\vec{v}, \vec{w} \in \mathbb{R}^3$ we non-zero.

a) Suppose $\vec{v} = \vec{w}$ (i.e. $\vec{v} \parallel \vec{w}$). Span \vec{v}, \vec{w} = $3\vec{v} + 4\vec{w}$

 = $3\vec{v} + 4\vec{v}$

 = $7\vec{v}$

 = $\text{Span of } \vec{v}$

i.e. a line $\vec{x} = c\vec{v}$ for $c \in \mathbb{R}$.

b) If $\vec{v} \parallel \vec{w}$ then Span \vec{v}, \vec{w} = $3\vec{v} + 4\vec{w} | c, d \in \mathbb{R}$. This is a plane (we might see this by associating $(c, d) \in \mathbb{R}^2$ to $c\vec{v} + d\vec{w}$ (Span \vec{v}, \vec{w})). We can obtain an equation for points in the plane by geometric considerations. We get: $\vec{x} \cdot (\vec{v} \times \vec{w}) = 0$.

c) We work out (b) in the case $\vec{v} = (1, 2, 3), \vec{w} = (3, 2, 1)$ (i.e. $\vec{v} \parallel \vec{w}$).

$\vec{v} \times \vec{w} = (-4, 8, -4)$

So we have $-4x + 8y - 4z = 0$ or $-x + 2y - z = 0$.

45 The largest possible rank of a 4×7 matrix is 4. There are only four rows.

51 Let A be 4×3. $Ax = b$ cannot be consistent for all $b \in \mathbb{R}^7$. b will be a combination of the three column 4-vectors of A, but there will always be vectors in \mathbb{R}^7 linearly independent of these column vectors.

53 Underdetermined $\Rightarrow A$ is $m \times n$ with $m < n$. So $m + n - m
$ therefore always free variables. This means the system either has no solutions or infinitely many.

56 A is $m \times n$, $b_1, b_2 \in \mathbb{R}^m$ s.t. $Ax = b_1$ and $Ax = b_2$ are consistent. Then there are $\bar{x}_1, \bar{x}_2 \in \mathbb{R}^n$ s.t. $A\bar{x}_1 = b_1, A\bar{x}_2 = b_2$.
So $A(\bar{x}_1 + \bar{x}_2) = A\bar{x}_1 + A\bar{x}_2 = b_1 + b_2$ $\Rightarrow A\bar{x} = b_1 + b_2$ is consistent.

Sec 1.6

1. a) T
 b) T
 c) F
 d) F
 e) F

9 \[
\begin{bmatrix}
1 & -1 & 2 \\
0 & 3 & x \\
-1 & 2 & -1
\end{bmatrix} \Rightarrow \begin{bmatrix}
1 & -1 & 2 \\
0 & 3 & x \\
0 & 1 & 1
\end{bmatrix} \Rightarrow x = 3
\]

13 \[
\{(-1), (-2)\} \quad (-2) = -2(-1) \quad \text{so Span}\{(-1), (-2)\} = \text{Span}\{(1)_2\} = \mathbb{R}^2
\]
There is possible inconsistency. So the set does not span \mathbb{R}^3.

40 A spanning set for \mathbb{R}^n must contain at least n vectors.

43 $\mathbf{u}_1, \ldots, \mathbf{u}_k \in \mathbb{R}^n$, $c_1, \ldots, c_k \in \mathbb{R} \setminus \{0\}$

\[
\frac{1}{c_i} \cdot c_i \mathbf{u}_i = \mathbf{u}_i \quad \text{so} \quad \mathbf{u}_1, \ldots, \mathbf{u}_k \in \text{Span} \{\mathbf{u}_1, \ldots, \mathbf{u}_k\}
\]

$\mathbf{c}_i \mathbf{u}_i = \mathbf{c}_i \mathbf{u}_i$ of course so $\text{Span} \{c_1 \mathbf{u}_1, \ldots, c_k \mathbf{u}_k\} \subseteq \text{Span} \{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$

So the two are equal.

44 $\mathbf{u}_1, \ldots, \mathbf{u}_k \in \mathbb{R}^n$, $c \in \mathbb{R}$

$\mathbf{u}_1, c \mathbf{u}_2 \in \text{Span} \{\mathbf{u}_1, \ldots, \mathbf{u}_k\} \Rightarrow \text{Span} \{\mathbf{u}_1, c \mathbf{u}_2, \mathbf{u}_2, \ldots, \mathbf{u}_k\} \subseteq \text{Span} \{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$

$\mathbf{u}_1 = (\mathbf{u}_1, c \mathbf{u}_2) - c \mathbf{u}_2 \Rightarrow \text{Span} \{\mathbf{u}_1, \ldots, \mathbf{u}_k\} \subseteq \text{Span} \{\mathbf{u}_1 + c \mathbf{u}_2, \mathbf{u}_2, \ldots, \mathbf{u}_k\}$

So the two are equal.

49 $A = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}$ where $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{R}^n$. B is obtained by a single row operation from A.

There are 2 possibilities:

1) $B = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_k \end{bmatrix}$ i.e. exchange of rows. This clearly doesn't change the span.
2) \(B = \begin{bmatrix} a_1 \\ \vdots \\ c_a \\ \vdots \\ a_m \end{bmatrix}, \text{ c.d.e R}. \) This does not change the span by (43).

3) \(B = \begin{bmatrix} a_1 \\ \vdots \\ c_b \\ \vdots \\ a_m \end{bmatrix}, \text{ c.d.e R}. \) this does not change the span by (44).

50 \(R, \) the reduced row echelon form of \(A \) is obtained from \(A \) by a finite sequence of elementary row operations. At each stage, the span is preserved as shown in (44). So the span of the rows of \(R \) is the same as the span of the rows of \(A \).