Mathematics V1202 Calculus IV

Practice Final Exam

- **1.** Convert the integral $\int_0^2 \int_{-\sqrt{4-x^2}}^0 \frac{xy}{\sqrt{x^2+y^2}} \, dy \, dx$ to polar coordinates and evaluate it.
- 2. Exploit symmetry to evaluate $\iint_D (\sin^{35} x + e^y + y e^{y^4}) dy dx$, where $D = [-1, 1] \times [-1, 1]$. Explain your reasoning clearly!
- **3.** Evaluate the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = (1 + \tan^2 x, x^2 + e^y)$, and *C* is the counterclockwise boundary of the plane region *E* enclosed by $y = \sqrt{x}$, x = 1, and y = 0.
- **4.** Evaluate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = (xz, yz, z^2)$, and S is the portion of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant $(x, y, z \ge 0)$, oriented outward.
- **5.** Let $\mathbf{F}(x, y, z) = ((z-5)^{72} yz, xz, xy)$. Compute $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$, where S is the part of the paraboloid $z = 9 x^2 y^2$ that lies above the plane z = 5, oriented upward.
- 6. Let $\mathbf{r} = (x, y, z)$. Compute the gradient of $\ln |\mathbf{r}|$. Express your answer in terms of \mathbf{r} .
- 7. Find a function g such that $\mathbf{F} = \nabla g$ and use it to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$. $\mathbf{F}(x, y) = (e^{2y}, 1 + 2xe^{2y}); \quad C = \{(te^t, 1+t) : t \in [0, 1]\}.$
- 8. Suppose that \mathbf{F} and \mathbf{G} are vector fields, defined and with continuous partials on all of \mathbf{R}^3 , which have the same curl: $\nabla \times \mathbf{F} = \nabla \times \mathbf{G}$. Also suppose that C and D are piecewise smooth curves in \mathbf{R}^3 having the same initial point and the same terminal point. Show that $\int_C \mathbf{F} \cdot d\mathbf{r} + \int_D \mathbf{G} \cdot d\mathbf{r} = \int_C \mathbf{G} \cdot d\mathbf{r} + \int_D \mathbf{F} \cdot d\mathbf{r}$. State clearly what domains of integration you use.
- 9. Clearly, concisely, completely, and correctly state the Cauchy Integral Theorem.
- 10. Determine all the cube roots of -i. Express them in rectangular form.
- 11. Find a nonzero harmonic function f(x, y) that vanishes at (1, 0), (-1, 0), (0, 1), and (0, -1).
- 12. If a complex function g(z) is differentiable at all $z \in \mathbf{C}$, and its real and imaginary parts are equal, does it have to be constant? Why or why not?
- 13. Express $e^z/(z^2-z)$ as a sum of two terms of the form $f(z)/(z-z_0)$, with f(z) holomorphic. Use this to evaluate

$$\oint_C \frac{e^z \, dz}{z^2 - z}$$

where C is the ellipse $x^2/9 + y^2 = 1$, oriented counterclockwise.