
2 Complex Functions and the Cauchy-Riemann

Equations

2.1 Complex functions

In one-variable calculus, we study functions f(x) of a real variable x. Like-
wise, in complex analysis, we study functions f(z) of a complex variable
z ∈ C (or in some region of C). Here we expect that f(z) will in general
take values in C as well. However, it will turn out that some functions are
better than others. Basic examples of functions f(z) that we have already
seen are: f(z) = c, where c is a constant (allowed to be complex), f(z) = z,
f(z) = z̄, f(z) = Re z, f(z) = Im z, f(z) = |z|, f(z) = ez. The “func-
tions” f(z) = arg z, f(z) =

√
z, and f(z) = log z are also quite interesting,

but they are not well-defined (single-valued, in the terminology of complex
analysis).

What is a complex valued function of a complex variable? If z = x + iy,
then a function f(z) is simply a function F (x, y) = u(x, y) + iv(x, y) of the
two real variables x and y. As such, it is a function (mapping) from R

2 to
R

2. For example, f(z) = z corresponds to F (x, y) = x + iy; f(z) = z̄ to
F (x, y) = x− iy, f(z) = |z| to F (x, y) =

√

x2 + y2. Here, this last example
takes values just along the real axis. If f(z) = u + iv, then the function
u(x, y) is called the real part of f and v(x, y) is called the imaginary part

of f . Of course, it will not in general be possible to plot the graph of f(z),
which will lie in C

2, the set of ordered pairs of complex numbers, but it is
the set {(z,w) ∈ C

2 : w = f(z)}. The graph can also be viewed as the
subset of R

4 given by {(x, y, s, t) : s = u(x, y), t = v(x, y)}. In particular, it
lies in a four-dimensional space.

The usual operations on complex numbers extend to complex functions:
given a complex function f(z) = u+iv, we can define functions Re f(z) = u,
Im f(z) = v, f(z) = u − iv, |f(z)| =

√
u2 + v2. Likewise, if g(z) is another

complex function, we can define f(z)g(z) and f(z)/g(z) for those z for which
g(z) 6= 0.

Some of the most interesting examples come by using the algebraic op-
erations of C. For example, a polynomial is an expression of the form

P (z) = anzn + an−1z
n−1 + · · · + a0,

where the ai are complex numbers, and it defines a function in the usual
way. It is easy to see that the real and imaginary parts of a polynomial P (z)
are polynomials in x and y. For example,

P (z) = z2 = x2 − y2 + 2xyi.
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But given two (real) polynomial functions u(x, y) and z(x, y), it is very rarely
the case that there exists a complex polynomial P (z) such that P (z) = u+iv.
For example, it is not hard to see that x cannot be of the form P (z), nor can
z̄. As we shall see later, no polynomial in x and y taking only real values for

every z (i.e. v = 0) can be of the form P (z). Of course, since x =
1

2
(z + z̄)

and y =
1

2i
(z − z̄), every polynomial in x and y is also a polynomial in z

and z̄. Finally, while on the subject of polynomials, let us mention the

Fundamental Theorem of Algebra (first proved by Gauss in 1799): If
P (z) is a nonconstant polynomial, then P (z) has a complex root. In other
words, there exists a complex number c such that P (c) = 0. From this, it is
easy to deduce the following corollaries:

1. If P (z) is a polynomial of degree n > 0, then P (z) can be factored
into linear factors:

P (z) = a(z − c1) · · · (z − cn),

for complex numbers a and c1, . . . , cn.

2. Every nonconstant polynomial p(x) with real coefficients can be fac-
tored into (real) polynomials of degree one or two.

Here the first statement is a consequence of the fact that c is a root of P (z) if
and only if (z−c) divides P (z), plus induction. The second statement follows
from the first and the fact that, for a polynomial with real coefficients,
complex roots occur in conjugate pairs.

One consequence of the Fundamental Theorem of Algebra is that, having
enlarged the real numbers so as to have a root of the polynomial equation
x2 + 1 = 0, we are now miraculously able to find roots of every polynomial
equation, including the ones where the coefficients are allowed to be complex.
This suggests that it is very hard to further enlarge the complex numbers in
such a way as to have any reasonable algebraic properties. Finally, we should
mention that, despite its name, the Fundamental Theorem of Algebra is not
really a theorem in algebra, and in fact some of the most natural proofs of
this theorem are by using methods of complex analysis.

We can define a broader class of complex functions by dividing polynomi-
als. By definition, a rational function R(z) is a quotient of two polynomials:

R(z) = P (z)/Q(z),
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where P (z) and Q(z) are polynomials and Q(z) is not identically zero. Using
the factorization (1) above, it is not hard to see that, if R(z) is not actually
a polynomial, then it fails to be defined, roughly speaking, at the roots of
Q(z) which are not also roots of P (z). (We have to be a little careful if there
are multiple roots.)

Finally, there are complex functions which can be defined by power series.
We have already seen the most important example of such a function, ez =
∑

∞

n=0 zn/n!, which is defined for all z. Other examples are, for instance,

1

1 − z
=

∞
∑

n=0

zn, |z| < 1.

However, to make sense of such expressions, we would have to discuss con-
vergence of sequences and series for complex numbers. We will not do so
here, but will give a brief discussion below of limits and continuity for com-
plex functions. (It turns out that, once things are set up correctly, the
comparison and ration tests work for complex power series.)

2.2 Limits and continuity

The absolute value measures the distance between two complex numbers.
Thus, z1 and z2 are close when |z1 − z2| is small. We can then define the
limit of a complex function f(z) as follows: we write

lim
z→c

f(z) = L,

where c and L are understood to be complex numbers, if the distance from
f(z) to L, |f(z) − L|, is small whenever |z − c| is small. More precisely, if
we want |f(z) − L| to be less than some small specified positive real nmber
ǫ, then there should exist a positive real number δ such that, if |z − c| < δ,
then |f(z) − L| < ǫ. Note that, as with real functions, it does not matter
if f(c) = L or even that f(z) be defined at c. It is easy to see that, if
c = (c1, c2), L = a + bi and f(z) = u + iv is written as a real and an
part, then limz→c f(z) = L if and only if lim(x,y)→(c1,c2) u(x, y) = a and
lim(x,y)→(c1,c2) v(x, y) = b. Thus the story for limits of functions of a complex
variable is the same as the story for limits of real valued functions of the
variables x, y. However, a real variable x can approach a real number c only
from above or below, whereas there are many ways for a complex variable
to approach a complex number c.

Sequences, limits of sequences, and series can be defined similarly.
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As for functions of a real variable, a function f(z) is continuous at c if

lim
z→c

f(z) = f(c).

In other words: 1) the limit exists; 2) f(z) is defined at c; 3) its value at c
is the limiting value. A function f(z) is continuous if it is continuous at al
points where it is defined. It is easy to see that a function f(z) = u + iv is
continuous if and only if its real and imaginary parts are continuous, and that
the usual functions z, z̄,Re z, Im z, |z|, ez are continuous. All polynomials
P (z) are continuous, as are all two-variable polynomial functions in x and
y. A rational function R(z) = P (z)/Q(z) is continuous where it is defined,
i.e. where the denominator is not zero. More generally, if f(z) and g(z) are
continuous, then so are:

1. cf(z), where c is a constant;

2. f(z) + g(z);

3. f(z) · g(z);

4. f(z)/g(z), where defined (i.e. where g(z) 6= 0).

2.3 Complex derivatives

Having discussed some of the basic properties of functions, we ask now
what it means for a function to have a complex derivative. Here we will
see something quite new: this is very different from asking that its real and
imaginary parts have partial derivatives with respect to x and y. We will
not worry about the meaning of the derivative in terms of slope, but only
ask that the usual difference quotient exists.

Definition A function f(z) is complex differentiable at c if

lim
z→c

f(z) − f(c)

z − c

exists. In this case, the limit is denoted by f ′(c). Making the change of
variable z = c+ h, f(z) is complex differentiable at c if and only if the limit

lim
h→0

f(c + h) − f(c)

h

exists, in which case the limit is again f ′(c). A function is simply complex
differentiable if it is complex differentiable at every point where it is defined,

and we write the derivative as the function f ′(z) or
d

dz
f(z).
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For example, a constant function f(z) = C is everywhere complex differ-
entiable and its derivative f ′(z) = 0. The function f(z) = z is also complex
differentiable, since in this case

f(z) − f(c)

z − c
=

z − c

z − c
= 1.

Thus (z)′ = 1. But many simple functions do not have complex derivatives.
For example, consider f(z) = Re z = x. We show that the limit

lim
h→0

f(c + h) − f(c)

h

does not exist for any c. Let c = a + bi, so that f(c) = a. First consider
h = t a real number. Then f(c + t) = a + t and so

f(c + h) − f(c)

h
=

a + t − a

t
= 1.

So if the limit exists, it must be 1. On the other hand, we could use h = it.
In this case, f(c + it) = f(c) = a, and

f(c + h) − f(c)

h
=

a − a

t
= 0.

Thus approaching c along horizontal and vertical directions has given two
different answers, and so the limit cannot exist. Other simple functions
which can be shown not to have complex derivatives are Im z, z̄, and |z|.

On the bright side, the usual rules for derivatives can be checked to hold:

1. If f(z) is complex differentiable, then so is cf(z), where c is a constant,
and (cf(z))′ = cf ′(z);

2. (Sum rule) If f(z) and g(z) are complex differentiable, then so is f(z)+
g(z), and (f(z) + g(z))′ = f ′(z) + g′(z);

3. (Product rule) If f(z) and g(z) are complex differentiable, then so is
f(z) · g(z) and (f(z) · g(z))′ = f ′(z)g(z) + f(z)g′(z);

4. (Quotient rule) If f(z) and g(z) are complex differentiable, then so is
f(z)/g(z), where defined (i.e. where g(z) 6= 0), and

(

f(z)

g(z)

)

′

=
f ′(z)g(z) − f(z)g′(z)

g(z)2
;
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5. (Chain rule) If f(z) and g(z) are complex differentiable, then so is
f(g(z)) where defined, and (f(g(z)))′ = f ′(g(z)) · g′(z).

6. (Inverse functions) If f(z) is complex differentiable and one-to-one,
with nonzero derivative, then the inverse function f−1(z) is also dif-
ferentiable, and

(f−1(z))′ = 1/f ′(f−1(z)).

Thus for example we have the power rule (zn)′ = nzn−1, every polyno-
mial P (z) = anzn + an−1z

n−1 + · · · + a0 is complex differentiable, with

P ′(z) = nanzn−1 + (n − 1)an−1z
n−2 · · · + a1,

and every rational function is also complex differentiable. It follows that a
function which is not complex differentiable, such as Re z or z̄ cannot be
written as a complex polynomial or rational function.

2.4 The Cauchy-Riemann equations

We now turn systematically to the question of deciding when a complex
function f(z) = u + iv is complex differentiable. If the complex derivative
f ′(z) is to exist, then we should be able to compute it by approaching z
along either horizontal or vertical lines. Thus we must have

f ′(z) = lim
t→0

f(z + t) − f(z)

t
= lim

t→0

f(z + it) − f(z)

it
,

where t is a real number. In terms of u and v,

lim
t→0

f(z + t) − f(z)

t
= lim

t→0

u(x + t, y) + iv(x + t, y) − u(x, y) − v(x, y)

t

= lim
t→0

u(x + t, y) − u(x, y)

t
+ i lim

t→0

v(x + t, y) − v(x, y)

t
=

∂u

∂x
+ i

∂v

∂x
.

Taking the derivative along a vertical line gives

lim
t→0

f(z + it) − f(z)

it
= −i lim

t→0

u(x, y + t) + iv(x, y + t) − u(x, y) − v(x, y)

t

= −i lim
t→0

u(x, y + t) − u(x, y)

t
+ lim

t→0

v(x, y + t) − v(x, y)

t
= −i

∂u

∂y
+

∂v

∂y
.

Equating real and imaginary parts, we see that: If a function f(z) =
u+ iv is complex differentiable, then its real and imaginary parts satisfy the
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Cauchy-Riemann equations:

∂u

∂x
=

∂v

∂y
;

∂v

∂x
= −∂u

∂y
.

Moreover, the complex derivative f ′(z) is then given by

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=

∂v

∂y
− i

∂u

∂y
.

Examples: the function z2 = (x2 − y2) + 2xyi satisfies the Cauchy-
Riemann equations, since

∂

∂x
(x2 − y2) = 2x =

∂

∂y
(2xy) and

∂

∂x
(2xy) = 2y = − ∂

∂y
(x2 − y2).

Likewise, ez = ex cos y + iex sin y satisfies the Cauchy-Riemann equations,
since

∂

∂x
(ex cos y) = ex cos y =

∂

∂y
(ex sin y) and

∂

∂x
(ex sin y) = ex sin y = − ∂

∂y
(ex cos y).

Moreover, ez is in fact complex differentiable, and its complex derivative is

d

dz
ez =

∂

∂x
(ex cos y) +

∂

∂x
(ex sin y) = ex cos y + ex sin y = ez.

The chain rule then implies that
d

dz
eαz = αeαz . From the sum rule and the

expressions for sin z and cos z in terms of eiz and e−iz, it is easy to check
that the usual rules hold:

d

dz
cos z = − sin z;

d

dz
sin z = cos z.

On the other hand, z̄ does not satisfy the Cauchy-Riemann equations, since

∂

∂x
(x) = 1 6= ∂

∂y
(−y).

Likewise, f(z) = x2+iy2 does not. Note that the Cauchy-Riemann equations
are two equations for the partial derivatives of u and v.

We have seen that a function with a complex derivative satisfies the
Cauchy-Riemann equations. In fact, the converse is true:
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Theorem: Let f(z) = u + iv be a complex function defined in a region
(open subset) D of C, and suppose that u and v have continuous first partial
derivatives with respect to x and y. If u and v satisfy the Cauchy-Riemann
equations, then f(z) has a complex derivative.

The proof of this theorem is not difficult, but involves a more careful
understanding of the meaning of the partial derivatives and linear approxi-
mation in two variables.

Thus we see that the Cauchy-Riemann equations give a complete cri-
terion for deciding if a function has a complex derivative. There is also
a geometric interpretation of the Cauchy-Riemann equations. Recall that

∇u =

(

∂u

∂x
,
∂u

∂y

)

and that ∇v =

(

∂v

∂x
,
∂v

∂y

)

. Then u and v satisfy the

Cauchy-Riemann equations if and only if

∇v =

(

∂v

∂x
,
∂v

∂y

)

=

(

−∂u

∂y
,
∂u

∂x

)

.

If this holds, then the level curves u = c1 and v = c2 are orthogonal where
they intersect (and the converse is almost true).

Instead of saying that a function f(z) has a complex derivative, or equiv-
alently satisfies the Cauchy-Riemann equations, we shall call f(z) analytic.
Here are some basic properties of analytic functions, which are easy conse-
quences of the Cauchy-Riemann equations:

Theorem: Let f(z) be an analytic function.

1. If f ′(z) is identically zero, then f(z) is a constant.

2. If either Re f(z) = u or Im f(z) = v is constant, then f(z) is constant.
In particular, a nonconstant analytic function cannot take only real or
only pure imaginary values.

3. If |f(z)| is constant or arg f(z) is constant, then f(z) is constant.

For example, if f ′(z) = 0, then

0 = f ′(z) =
∂u

∂x
+ i

∂v

∂x
.

Thus
∂u

∂x
=

∂v

∂x
= 0. By the Cauchy-Riemann equations,

∂v

∂y
=

∂u

∂y
= 0

as well. Hence f(z) is a constant. This proves (1). To see (2), assume

for instance that u is constant. Then
∂u

∂x
=

∂v

∂x
= 0, and, as above, the
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Cauchy-Riemann equations then imply that
∂v

∂y
=

∂u

∂y
= 0. Again, f(z) is

constant. Part (3) can be proved along similar but more complicated lines.

2.5 Harmonic functions

Let f(z) be an analytic function, and assume that u and v have partial
derivatives of order 2 (in fact, this turns out to be automatic. Then, using
the Cauchy-Riemann equations and the equality of mixed partials, we have:

∂2u

∂x2
=

∂

∂x

∂u

∂x
=

∂

∂x

∂v

∂y
=

∂

∂y

∂v

∂x
= − ∂

∂y

∂u

∂y
= −∂2u

∂y2
.

In other words, u satisfies:

∂2u

∂x2
+

∂2u

∂y2
= 0.

The above equation is a very important second order partial differential
equation, and solutions of it are called harmonic functions. Thus, the real
part of an analytic function is harmonic. A similar argument shows that v
is also harmonic, i.e. the imaginary part of an analytic function is harmonic.
It can also be shown that, essentially, all harmonic functions arise as the
real parts of analytic functions. The only slight problem is that the analytic
functions might not be single-valued, even if the harmonic function is single
valued. The basic example is Re log z = 1

2 ln(x2 + y2). A calculation (left as
homework) shows that this function is harmonic. But an analytic function
whose real part is the same as that of log z must agree with log z up to an
imaginary constant, and so cannot be single-valued.

Thus, we can generate lots of harmonic functions, in fact essentially all
of them, by taking real or imaginary parts of analytic functions. Harmonic
functions are very important in mathematical physics, and one reason for the
importance of analytic functions is their connection to harmonic functions.

2.6 Homework

1. Write each of the following functiosn f(z) in the form u + iv. Which
functions are analytic?

(a) z + iz2; (b) 1/z; (c) z̄/z.
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2. If f(z) = ez, describe the images under f(z) of horizontal and vertical
lines, i.e. what are the sets f(a + it) and f(t + ib), where a and b are
constants and t runs through all real numbers?

3. Can the function z̄/z be continuously extended to z = 0? Why or why
not? Is the function z̄/z analytic where it is defined? Why or why
not?

4. Let f(z) be a complex function. Is it possible for both f(z) and f(z)
to be analytic?

5. Let f(z) = u+ iv be analytic. Recall that the Jacobian is the function
given by the following determinant:

∂(u, v)

∂(x, y)
=

∣

∣

∣

∣

∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

∣

∣

∣

∣

.

Using the Cauchy-Riemann equations, show that this is the same as
|f ′(z)|2.

6. Verify that Re 1/z, Im 1/z, and Re log z = 1
2 ln(x2 + y2) are harmonic.

7. If f(z) = u + iv is a complex function such that u and v are both
harmonic, is f(z) necessarily analytic?
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