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October 9, 2006
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which equals 4π(R3−n−r3−n)/(3−n) unless n = 3, in which case it’s 4π(ln R− ln r) =
4π ln(R/r).

(b) When n = 3, we’ve got the logarithm which doesn’t have this limit, but otherwise
we’ve got r3−n which has the limit if and only if n < 3.

3. The Jacobian determinant is ∂u/∂x ∂v/∂y− ∂u/∂y ∂v/∂x, which equals 2x cos3 y sin y+
2x cos y sin3 y = 2x cos y sin y = x sin 2y. This vanishes precisely when x = 0 or y is a
multiple of π/2.

4. Using polar coordinates, the y-moment is∫ ∫
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Likewise, the mass is
∫ ∫
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1 dA = 9π/4 (though you could also work this out from the

area πr2 of a disc). The x-moment is 0 on symmetry grounds, so the center of mass is
(−28
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5. As in the HW problem 49 from §15.7, this is minimized when D is the region where
the integrand is ≤ 0. For on any other region E, the integral may be decreased by
including the portion of D which is not in E, or by excluding the portion of E which
is not in D. The region D is the one enclosed by the ellipse x2/4 + y2 = 1.

6. Note that f(x, y) = 2x2 + 2y2 and g(x, y) = 4xy have the same partials! That is,
∂f/∂x = ∂g/∂y = 4x, and ∂f/∂y = ∂g/∂x = 4y. The surface area integrand in each
case is thus

√
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the rectangle R and the integrand is positive, we have∫ ∫
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that is, S < T .


