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2. This is twice the area below the line θ = π/4 and within the circle r = sin θ, so it is
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3. (a) There are 6 possibilities for the order of arrival, viz. XYZ, XZY, YXZ, YZX, ZXY,
ZYX, all equally likely, so the probability of XYZ is 1/6. (b) The probability density
is just 1, and the XYZ region is defined by 0 ≤ x ≤ y ≤ z ≤ 1, so the integral is∫ 1
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4. See sketch below. Since wedge lies over region E inside ellipse where x ≥ 0, volume is∫ ∫
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5. Indeed, this is true for any plane region D. The partials of g are twice those of f , so
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Taking square roots preserves the inequalities, since the square root is an increasing
function. So by the comparison property of double integrals,∫∫
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and hence S ≤ T ≤ 2S.

6. This is a spherical box, so∫ ∫ ∫
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= 1 · π/2 · 128/7 = 64π/7.


