Mathematics V1207x Honors Mathematics A

Answers to Practice Midterm

October 28, 2015

1. For $S \subset \mathbb{R}$ nonempty and bounded above, let $s=\sup S$; then for all $\epsilon>0$, there exists $x \in S$ such that $x>s-\epsilon$.
2. For any s and $s^{\prime} \in S$, suppose that $g \circ f(s)=g \circ f\left(s^{\prime}\right)$. Then $g(f(s))=g\left(f\left(s^{\prime}\right)\right)$ by definition of composition. Since g is injective, $f(s)=f\left(s^{\prime}\right)$. Then since f is injective, $s=s^{\prime}$. Hence $g \circ f$ is injective.
3. Proof by induction on n. For $n=0$, clearly $2^{0+1}=2 \geq 2=2 \dot{0}+2$. Now assume that for a given $n, 2^{n+1} \geq 2 n+2$. Then $2^{n+2}=2 \cdot 2^{n+1}=2^{n+1}+2^{n+1} \geq 2 n+2+2 n+2=$ $2(n+1)+2+n \geq 2(n+1)+2$ where the last inequality is because $n \geq 0$ for all natural n.
4. (a) $f(x)=[x]$; (b) $f(x)=x$. (c): If $x \leq y$, then $S \cap[0, x] \subset S \cap[0, y]$, so any upper bound (such as sup $S \cap[0, y]$) for the latter is an upper bound for the former, so the least upper bound must satisfy sup $S \cap[0, x] \leq \sup S \cap[0, y]$, so $f(x) \leq f(y)$. Hence f is monotonic, hence integrable on $[0,10]$.
5. Proof 1: For all $x \in \mathbb{R},|g(x)| \leq 1$, so $-1 \leq g(x) \leq 1$, so by the comparison theorem for integrals, $-(b-a)=\int_{a}^{b}-1 d x \leq \int_{a}^{b} g(x) d x \leq \int_{a}^{b} 1 d x=b-a$, so $\left|\int_{a}^{b} g(x) d x\right| \leq b-a$. Proof 2: By an assigned problem (A5\#6 in fact) g integrable implies $|g|$ integrable, and by another assigned problem (A4\#5) and the comparison theorem for integrals, $\left|\int_{a}^{b} g(x) d x\right| \leq \int_{a}^{b}|g(x)| d x \leq \int_{a}^{b} 1 d x=b-a$.
(Proof 1 is perhaps better than Proof 2 since it doesn't use g integrable implies $|g|$ integrable, which is relatively hard to prove.)
6. Proof 1: If there were a limit, say $K \in \mathbb{R}$, then by the definition of limit, for all $\epsilon>0$ there exists $\delta>0$ such that $0<|x|<\delta$ implies $|1 / x-K|<\epsilon$, that is, $-\epsilon<1 / x-K<\epsilon$. For any such ϵ and δ, by the Archimedean property there exists an integer $n>\max (1 / \delta, \epsilon+K)$, that is, $n>1 / \delta$ and $n>\epsilon+K$. Then $x=1 / n$ satisfies $0<|x|<\delta$ but $1 / x-K>\epsilon$, contradiction.
Proof 2: If there were a limit, say $K \in \mathbb{R}$, then basic limit theorem 1c implies $1=$ $\lim _{x \rightarrow 0} x \frac{1}{x}=\left(\lim _{x \rightarrow 0} x\right)\left(\lim _{x \rightarrow 0} \frac{1}{x}\right)=0 K=0$, contradiction.
7. Proof 1: since all terms in the inequalities are nonnegative, $|f g(x)|=|f(x)||g(x)| \leq$ $|x| \cdot 1=|x|$, so $-|x| \leq f g(x) \leq|x|$. Since $\lim _{x \rightarrow 0}-|x|=\lim _{x \rightarrow 0}|x|=0$, by the squeezing theorem $\lim _{x \rightarrow 0} f g(x)=0$. But $|f(0)| \leq|0|$, so $f(0)=0$ and $f g(0)=$ $0 g(0)=0$. Hence $\lim _{x \rightarrow 0} f g(x)=f g(0)$.
Proof 2: Given $\epsilon>0$, take $\delta=\epsilon$. Then $0<|x-0|<\delta$ implies $|f g(x)|=|f(x)||g(x)| \leq$ $|x| \cdot 1<\delta=\epsilon$, so $\lim _{x \rightarrow 0} f g(x)=0$. But $|f(0)| \leq|0|$, so $f(0)=0$ and $f g(0)=0 g(0)=$ 0 . Hence $\lim _{x \rightarrow 0} f g(x)=f g(0)$.
