Mathematics V1207x Honors Mathematics A

Answers to Practice Midterm October 28, 2015

- **1.** For $S \subset \mathbb{R}$ nonempty and bounded above, let $s = \sup S$; then for all $\epsilon > 0$, there exists $x \in S$ such that $x > s \epsilon$.
- **2.** For any s and $s' \in S$, suppose that $g \circ f(s) = g \circ f(s')$. Then g(f(s)) = g(f(s')) by definition of composition. Since g is injective, f(s) = f(s'). Then since f is injective, s = s'. Hence $g \circ f$ is injective.
- **3.** Proof by induction on *n*. For n = 0, clearly $2^{0+1} = 2 \ge 2 = 2\dot{0} + 2$. Now assume that for a given $n, 2^{n+1} \ge 2n+2$. Then $2^{n+2} = 2 \cdot 2^{n+1} = 2^{n+1} + 2^{n+1} \ge 2n+2+2n+2 = 2(n+1)+2+n \ge 2(n+1)+2$ where the last inequality is because $n \ge 0$ for all natural *n*.
- 4. (a) f(x) = [x]; (b) f(x) = x. (c): If $x \le y$, then $S \cap [0, x] \subset S \cap [0, y]$, so any upper bound (such as $\sup S \cap [0, y]$) for the latter is an upper bound for the former, so the least upper bound must satisfy $\sup S \cap [0, x] \le \sup S \cap [0, y]$, so $f(x) \le f(y)$. Hence f is monotonic, hence integrable on [0, 10].
- **5.** Proof 1: For all $x \in \mathbb{R}$, $|g(x)| \leq 1$, so $-1 \leq g(x) \leq 1$, so by the comparison theorem for integrals, $-(b-a) = \int_a^b -1 \, dx \leq \int_a^b g(x) \, dx \leq \int_a^b 1 \, dx = b-a$, so $|\int_a^b g(x) \, dx| \leq b-a$. Proof 2: By an assigned problem (A5#6 in fact) g integrable implies |g| integrable, and by another assigned problem (A4#5) and the comparison theorem for integrals, $|\int_a^b g(x) \, dx| \leq \int_a^b |g(x)| \, dx \leq \int_a^b 1 \, dx = b-a$. (Proof 1 is perhaps better than Proof 2 since it doesn't use g integrable implies |g|

(Proof 1 is perhaps better than Proof 2 since it doesn't use g integrable implies |g| integrable, which is relatively hard to prove.)

6. Proof 1: If there were a limit, say $K \in \mathbb{R}$, then by the definition of limit, for all $\epsilon > 0$ there exists $\delta > 0$ such that $0 < |x| < \delta$ implies $|1/x - K| < \epsilon$, that is, $-\epsilon < 1/x - K < \epsilon$. For any such ϵ and δ , by the Archimedean property there exists an integer $n > \max(1/\delta, \epsilon + K)$, that is, $n > 1/\delta$ and $n > \epsilon + K$. Then x = 1/n satisfies $0 < |x| < \delta$ but $1/x - K > \epsilon$, contradiction.

Proof 2: If there were a limit, say $K \in \mathbb{R}$, then basic limit theorem 1c implies $1 = \lim_{x\to 0} x_x^1 = (\lim_{x\to 0} x)(\lim_{x\to 0} \frac{1}{x}) = 0$, contradiction.

7. Proof 1: since all terms in the inequalities are nonnegative, $|fg(x)| = |f(x)| |g(x)| \le |x| \cdot 1 = |x|$, so $-|x| \le fg(x) \le |x|$. Since $\lim_{x\to 0} -|x| = \lim_{x\to 0} |x| = 0$, by the squeezing theorem $\lim_{x\to 0} fg(x) = 0$. But $|f(0)| \le |0|$, so f(0) = 0 and fg(0) = 0g(0) = 0. Hence $\lim_{x\to 0} fg(x) = fg(0)$. Proof 2: Given $\epsilon > 0$, take $\delta = \epsilon$. Then $0 < |x-0| < \delta$ implies $|fg(x)| = |f(x)| |g(x)| \le |x| \cdot 1 < \delta = \epsilon$, so $\lim_{x\to 0} fg(x) = 0$. But $|f(0)| \le |0|$, so f(0) = 0 and fg(0) = 0g(0) = 0. Hence $\lim_{x\to 0} fg(x) = 0$. But $|f(0)| \le |0|$, so f(0) = 0 and fg(0) = 0g(0) = 0. Hence $\lim_{x\to 0} fg(x) = fg(0)$.