Mathematics V1207x
 Honors Mathematics A

Answers to Practice Final

December 21, 2015

1. True: this is $g \circ f(x)$ where $g(y)=|y|$ is also continuous.
2. False: not even true for $f(x)=x$ on $[-1,1]$.
3. False: the harmonic series $a_{n}=1 / n$ is a counterexample.
4. True: $e^{-(n+1)^{2}} / e^{-n^{2}}=e^{-2 n-1} \rightarrow 0$ as $n \rightarrow \infty$, so converges by ratio test.
5. True: $\left|\sin (n x) / 2^{n}\right| \leq 1 / 2^{n}$, and $\sum 1 / 2^{n}$ converges, so this converges uniformly by Weierstrass M-test. And uniform limits of continuous functions are continuous.
6. True: we proved in class that the map taking A to T_{A} is an isomorphism, hence linear and injective, hence has kernel $=\{\overrightarrow{0}\}$ by A12\#4.
7. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then for all $\epsilon>0$ there exists a partition $a=x_{0}<x_{1}<\cdots<$ $x_{n}=b$ such that for each $i \in\{1, \ldots, n\}, M\left(\left.f\right|_{\left[x_{i-1}, x_{i}\right]}\right)-m\left(\left.f\right|_{\left[x_{i-1}, x_{i}\right]}\right)<\epsilon$. Here M and m denote the absolute maximum and absolute minimum, respectively.
8. If $f_{n}:[a, b] \rightarrow \mathbb{R}$ are continuous and converge uniformly to $f:[a, b] \rightarrow \mathbb{R}$, then the indefinite integrals $\int_{a}^{x} f_{n}(t) d t$ converge uniformly, as a function of x, to $\int_{a}^{x} f(t) d t$.
9. A series $\sum_{n=0}^{\infty} a_{n}$ converges if the sequence $\left\{\sum_{n=0}^{m} a_{n}\right\}$ of partial sums converges, that is, if $\lim _{m \rightarrow \infty} \sum_{n=0}^{m} a_{n}$ exists. It converges absolutely if the series $\sum_{n=0}^{\infty}\left|a_{n}\right|$ converges.
10. The standard basis vectors $\vec{e}_{1}, \ldots, \vec{e}_{n} \in \mathbb{R}^{n}$ are the vectors whose components are $\left(\vec{e}_{i}\right)_{j}=\delta_{i, j}$. Here, for $i, j \in\{1, \ldots, n\}$, we define $\delta_{i, j}=1$ if $i=j$ and 0 if $i \neq j$.
11. Since f is a bijection, it has an inverse, that is, a function $h: T \rightarrow S$ such that $f \circ h=\mathrm{id}_{T}$ and $h \circ f=\operatorname{id}_{S}$. Then $f \circ g=(f \circ g) \circ \mathrm{id}_{T}=(f \circ g) \circ(f \circ h)=f \circ(g \circ f) \circ h=f \circ\left(\mathrm{id}_{S}\right) \circ h=f \circ h=\mathrm{id}_{T}$.
12. Differentiable implies continuous, so by the intermediate value theorem, there exist $a \in(0,1)$ and $b \in(1,2)$ such that $f(a)=f(b)=0$. Then by Rolle's theorem (or the mean-value theorem) there exists $x \in(a, b)$ such that $f^{\prime}(x)=0$.
13. Since $|\sin x| \leq 1, f(x / 2-1)<x<f(x / 2+1)$. Since f is continuous, by the intermediate value theorem there exists $y \in(x / 2-1, x / 2+1)$ such that $f(y)=x$.
If there were two distinct $y_{1}<y_{2}$ such that $f\left(y_{1}\right)=f\left(y_{2}\right)$, since f is differentiable there would exist $c \in\left(y_{1}, y_{2}\right)$ such that $f^{\prime}(c)=0$ by Rolle's theorem. But $f^{\prime}(x)=\cos x+2$ is never zero, contradiction.
14. The hypothesis means that for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $\left|a_{n}-L\right|<\epsilon$. By the triangle inequality,

$$
|L|=\left|L-a_{n}+a_{n}\right| \leq\left|L-a_{n}\right|+\left|a_{n}\right|
$$

and

$$
\left|a_{n}\right|=\left|a_{n}-L+L\right| \leq\left|a_{n}-L\right|+|L| .
$$

Subtracting $\left|L-a_{n}\right|+|L|$ from the first inequality and $|L|$ from the second gives

$$
-\left|a_{n}-L\right| \leq\left|a_{n}\right|-|L| \leq\left|a_{n}-L\right|
$$

that is,

$$
\left|\left|a_{n}\right|-|L|\right| \leq\left|a_{n}-L\right| .
$$

Hence for ϵ, N, and n as above, $\left|\left|a_{n}\right|-|L|\right| \leq\left|a_{n}-L\right|<\epsilon$, which implies the conclusion.
Alternative: By A9\#8, a continuous function such as $f(x)=|x|$ takes convergent sequences to convergent sequences; more precisely, if $\lim _{n \rightarrow \infty} a_{n}=L$, then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)$, hence $\lim _{n \rightarrow \infty}\left|a_{n}\right|=|L|$.
15. Pointwise: Take $x \in[0,1]$. If $x=0$, then $f_{n}(x)=0$ for all n, so obviously $f_{n}(x) \rightarrow 0$. Otherwise, for any $\epsilon>0$, let N be an integer $>1 / x$; then $n \geq N$ implies $1 / n \leq 1 / N<x$, so $f_{n}(x)=0$ and $\left|f_{n}(x)-0\right|=|0-0|<\epsilon$.
Uniform: Take $\epsilon=1$; then for all n there exists $x \in[0,1]$ (say $x=1 / 2 n)$ such that $\left|f_{n}(x)-0\right|=$ $n \geq \epsilon$, so convergence isn't uniform.
Alternative: f_{n} is a step function, and $\int_{0}^{1} f_{n}(x) d x=n / n=1$ doesn't converge to $\int_{0}^{1} 0 d x=0$, contradicting A10\#3.
16. Let E_{i} be the i th standard basis vector and let B be the vector with i th component $b_{i}=f\left(E_{i}\right)$. Then for any $X=\sum_{i=1}^{n} x_{i} E_{i}$, we have $f(X)=f\left(\sum_{i=1}^{n} x_{i} E_{i}\right)=\sum_{i=1}^{n} x_{i} f\left(E_{i}\right)=\sum_{i=1}^{n} x_{i} b_{i}=$ $\sum_{i=1}^{n} b_{i} x_{i}=B \cdot X$.
17. (a) We know that $\mathcal{F}([0,1], \mathbb{R})$ is a vector space, so it suffices to show that the set of step function is a subspace. But we know that if s and t are step functions, then so is $s+t$ (by passing to a common refinement). And if s is a step function and $c \in \mathbb{R}$, then $c s$ is a step function (by using the same refinement as for s). Hence the set of step functions is closed under addition and scalar multiplication, so it is a subspace.
(b) This is an immediate consequence of linearity (and homogeneity) for integrals of step functions: $\int_{0}^{x}(s+t)(y) d y=\int_{0}^{x} s(y) d y+\int_{0}^{x} t(y) d y$ and $\int_{0}^{x} c s(y) d y=c \int_{0}^{x} s(y) d y$. So if we let $\phi(s)=\int_{0}^{x} s(y) d y$, then $\phi(s+t)=\phi(s)+\phi(t)$ and $\phi(c s)=c \phi(s)$.
(c) This is not injective: both $s(x)=0$ and

$$
t(x)=\left\{\begin{array}{l}
1 \text { if } x=0 \\
0 \text { if } x \neq 0
\end{array}\right.
$$

have $\phi(s)=\phi(t)=0$.

