Mathematics V1207x Honors Mathematics A

Answers to Midterm Exam

October 28, 2015

1. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Its lower integral is $\underline{I}(f)=\sup \underline{S}(f)$ where

$$
\underline{S}(f)=\left\{\int_{a}^{b} s(x) d x \mid s:[a, b] \rightarrow \mathbb{R} \text { a step function, } s \leq f\right\} .
$$

Its upper integral is $\bar{I}(f)=\inf \bar{S}(f)$ where

$$
\bar{S}(f)=\left\{\int_{a}^{b} t(x) d x \mid t:[a, b] \rightarrow \mathbb{R} \text { a step function, } t \geq f\right\}
$$

(b) A function f as in (a) is integrable if $\underline{I}(f)=\bar{I}(f)$.
2. Given $\epsilon>0$, we know there exist $\delta_{1}, \delta_{2}>0$ such that for all $x \in \mathbb{R}$,

$$
\begin{array}{lll}
0<|x-c|<\delta_{1} & \Longrightarrow|f(x)-k|<\epsilon \quad \text { and } \\
0<|x-c|<\delta_{2} & \Longrightarrow|g(x)-k|<\epsilon .
\end{array}
$$

Take $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. Then for all $x \in \mathbb{R}$,

$$
\begin{aligned}
0<|x-c|<\delta & \Longrightarrow 0<|x-c|<\delta_{1} \text { and } 0<|x-c|<\delta_{2} \\
& \Longrightarrow|f(x)-k|<\epsilon \text { and }|g(x)-k|<\epsilon \\
& \Longrightarrow|h(x)-k|<\epsilon,
\end{aligned}
$$

regardless of whether or not $x \in \mathbb{Q}$.
3. Let $h(x)=1-x$. Being a polynomial, h is continuous.

Suppose f is continuous. Then $g=f \circ h$, as a composition of two continuous functions, is continuous.
Conversely, suppose g is continuous. Substituting $1-y$ for x, we find $g(1-y)=$ $f(1-(1-y))=f(y)$ and hence $f=g \circ h$. Then f, as a composition of two continuous functions, is continuous.
4. Let $g(x)=\int_{a}^{x} f(t) d t$ be the indefinite integral. If $x, y \in[a, b]$, then $g(y)-g(x)=$ $\int_{a}^{y} f(t) d t-\int_{a}^{x} f(t) d t=\int_{x}^{y} f(t) d t$ by concatenation. (The integrals are all defined by A5 \#5.) If $x \leq y$, by comparison $0=\int_{x}^{y} 0 d t \leq \int_{x}^{y} f(t) d t=g(y)-g(x)$ and hence $g(x) \leq g(y)$.
5. If $d<c$, then there exists an element of S greater than d (namely c), and hence d cannot be an upper bound for S. Since c is an upper bound, it is therefore the least upper bound.
6. (a) For $n \in \mathbb{N}$, let $[n]=\{i \in \mathbb{N} \mid 0<i \leq n\}$. A set S is finite if there exist $n \in \mathbb{N}$ and a bijection $f:[n] \rightarrow S$.
(b) A set is infinite if it is not finite.
7. Let $n=\# S$. Since S is finite and nonempty, $n \in \mathbb{N} \backslash\{0\}$. Proof by induction on n, starting with $n=1$. (To conform to the convention in class that induction starts with 0 , one could proceed by induction on $n-1$.)

If $n=1$, then there is a bijection $f:[1] \rightarrow S$, so $S=\{f(1)\}$. Then $f(1)$ is clearly an upper bound for S, and no $d<f(1)$ can be an upper bound, so $\sup S=f(1) \in S$.

Now, for a given $n>0$, assume the statement for sets with n elements and suppose there is a bijection $f:[n+1] \rightarrow S$. Let $T=\{f(i) \mid 0<i \leq n\}=\{f(1), \ldots, f(n)\}$. By induction $\sup T \in T$. Let $c=\max (\sup T, f(n+1))$. Then c is an upper bound and is an element of S, since it equals either $\sup T$ or $f(n+1)$. By $\# \mathbf{5}, c=\sup S$.

Note: it is tempting to arrange the elements of S in increasing order as $x_{1}<x_{2}<\cdots<$ x_{n} and then prove that $x_{n}=\sup S$. However, it is hard to prove that the elements can be arranged in increasing order without using the result of this problem! Thus there is a grave risk of circularity.

