Mathematics V1207x
 Honors Mathematics A

A SPEEDY REVIEW OF LOGIC

Letters P, Q, R denote statements which can be either true or false, but not both. For example, "All math teachers have red hair," "Crunchy-Wunchies are fortified with vitamins," "If the sun is shining, then it is daytime," "Francis Bacon wrote the works of Shakespeare."

The negation of P, written $\sim P$, is true when P is false and false when P is true: "Francis Bacon did not write the works of Shakespeare."
" P and Q," written $P \wedge Q$, is true when P and Q are both true, and false otherwise.
" P or Q," written $P \vee Q$, is true when one or both of P and Q is true, and false otherwise.
" P implies Q," also known as "if P, then Q," and written $P \Rightarrow Q$, is true when Q is true, and also when P is false; otherwise, it is false.
" P is equivalent to Q," also known as " P if and only if Q," written $P \Leftrightarrow Q$, is true when P and Q are both true, and also when they are both false; otherwise, it is false.
The following statements are then true regardless of the truth value of P and Q :

$$
\begin{array}{ll}
((P \Rightarrow Q) \wedge P) \Rightarrow Q & \text { (modus ponens) } \\
((P \Rightarrow Q) \wedge \sim Q) \Rightarrow \sim P & \text { (modus tollens) } \\
((P \Rightarrow Q) \wedge(Q \Rightarrow R)) \Rightarrow(P \Rightarrow R) & \\
(P \Rightarrow Q) \Leftrightarrow(\sim Q \Rightarrow \sim P) & \text { (an implication is equivalent to its contrapositive) } \\
(P \Rightarrow Q) \Leftrightarrow(Q \vee \sim P) & \\
((P \Rightarrow Q) \wedge(Q \Rightarrow P)) \Leftrightarrow(P \Leftrightarrow Q) & \\
\sim(P \wedge Q) \Leftrightarrow(\sim P \vee \sim Q) & \text { (the de Morgan laws) } \\
\sim(P \vee Q) \Leftrightarrow(\sim P \wedge \sim Q) &
\end{array}
$$

You can prove these statements using truth tables.
On the other hand, the following statements can be false. They are the sources of common errors. It's a good exercise to find truth values of P and Q making these false.

$$
\begin{array}{ll}
((P \Rightarrow Q) \wedge Q) \Rightarrow P & (\text { an implication may not work backwards }) \\
((P \Rightarrow Q) \wedge \sim P) \Rightarrow \sim Q & \\
(P \Rightarrow Q) \Leftrightarrow(Q \Rightarrow P) & (\text { an implication is not equivalent to its converse }) \\
(P \Rightarrow Q) \Leftrightarrow(\sim P \Rightarrow \sim Q) & (\ldots \text { or its inverse })
\end{array}
$$

OUR NAIVE SET AXIOMS

Axiom of existence. There exists a set A.
Axiom of specification. For any set A and any statement $P(x)$ involving an element x, there exists a subset B of A such that $x \in B$ if and only if $x \in A$ and $P(x)$ is true; it is denoted by $\{x \in A \mid P(x)\}$.
Axiom of singletons. For every set A, there is a set $\{A\}$ whose only element is A.
Axiom of unions. If A and B are sets, then there exists a set $A \cup B$, the union, such that $x \in A \cup B$ if and only if $x \in A$ or $x \in B$.
Axiom of intersections. If A and B are sets, then there exists a set $A \cap B$, the intersection, such that $x \in A \cap B$ if and only if $x \in A$ and $x \in B$.
Axiom of powers. If A is a set, there exists a set $\mathcal{P} A$, the power set, such that $x \in \mathcal{P} A$ if and only if x is a subset of A.

Axiom of products. If A, B are sets, there exists a set $A \times B$, the Cartesian product, whose elements are all the ordered pairs (x, y), where $x \in A$ and $y \in B$.

AXIOMS OF THE REAL NUMBERS

There exists a set \mathbb{R} having binary operations + and \cdot, a relation $>$, and elements 0 and $1 \in \mathbb{R}$, such that the following are true for all $x, y, z \in \mathbb{R}$:
Axiom of commutativity. $x+y=y+x$ and $x \cdot y=y \cdot x$.
Axiom of associativity. $(x+y)+z=x+(y+z)$ and $x \cdot(y \cdot z)=(x \cdot y) \cdot z$.
Axiom of distributivity. $x \cdot(y+z)=x \cdot y+x \cdot z$.
Axiom of identity elements. $0 \neq 1$ and $0+x=x=1 \cdot x$.
Axiom of additive inverses. There exists $w \in \mathbb{R}$ such that $w+x=0$; denote w by $-x$.
Axiom of multiplicative inverses. If $x \neq 0$, then there exists $w \in \mathbb{R}$ such that $w \cdot x=1$; denote w by $1 / x$.

Order axiom 1. If $x>0$ and $y>0$, then $x+y>0$ and $x \cdot y>0$.
Order axiom 2. If $x \neq 0$, then either $x>0$ or $-x>0$, but not both.
Order axiom 3. $0 \ngtr 0$.
Order axiom 4. If $x>y$, then $x+z>y+z$.
Axiom of completeness. For any subset $S \subset \mathbb{R}$ having an upper bound, that is, a number $b \in \mathbb{R}$ such that $b>x$ for all $x \in S$, there exists a least upper bound, that is, an upper bound c satisfying $b>c$ for all other upper bounds b for S.

