Mathematics V1207x Honors Mathematics A

Assignment #7

Due November 6, 2015

Reading: Apostol, §§4.10–4.20, pp. 174–194, and §§5.1–5.6, pp. 202–211.

- **1.** If $f : [a, b] \to \mathbb{R}$ is continuous and f(x) = 0 whenever x is rational, prove that f(x) = 0 for all $x \in [a, b]$.
- **2.** If $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ are both continuous and f(x) = g(x) whenever x is rational, prove that f = g.
- *3. Let $f : [a, b] \to \mathbb{R}$ be any integrable function. Prove that there is some $c \in [a, b]$ such that

$$\int_a^c f(x) \, dx = \frac{1}{2} \int_a^b f(x) \, dx.$$

(Hint: consider the properties of the indefinite integral as a function $[a, b] \to \mathbb{R}$.)

- *4. The intermediate value theorem was used in class to show that for every integer n > 0, every real $x \ge 0$ has an unique nonnegative *n*th root, that is, a real $y \ge 0$ such that $y^n = x$. Denote y by $\sqrt[n]{x}$ or $x^{1/n}$. Generalize the argument given in class for n = 2 to show that the function $f : [0, \infty) \to \mathbb{R}$ given by $f(x) = \sqrt[n]{x}$ is continuous.
- 5. Apostol §3.11 (p. 145) 1, 3, *5, 6.
- **6.** Apostol §3.20 (p. 155) *****7, *****8.
- **7.** Apostol §4.6 (p. 168) *****24.
- 8. Apostol §4.9 (p. 173) 9, *15. (In 15, each reason should be a very brief sketch of a proof or a counterexample. Also, there is a misprint: the denominators in (c) and (d) should be 2t and t respectively, not the other way around.)
- **9.** Apostol §4.12 (p. 180) 16, *19bc.