# Mathematics V1207x Honors Mathematics A 

Assignment \#6

Due October 23, 2015

Reading: Apostol, §§3.9-3.19, pp. 142-154, and §§4.1-4.8, pp. 156-172.

1. Apostol $\S 3.6(\mathrm{pp} .138-140) * 15,20,28, * 31, * 33$. (In 31 , if you give an example, prove that it works. For 33, don't neglect part c on p. 140.)
2. Apostol $\S 3.8($ p. 142) *11, 12, *16, *17, 18, 19. (Don't use l'Hôpital's rule.)
*3. Let $f:(a, b) \rightarrow \mathbb{R}$ and assume $x \in(a, b)$.
Consider the following two statements:
(a) $\lim _{h \rightarrow 0}|f(x+h)-f(x)|=0$;
(b) $\lim _{h \rightarrow 0}|f(x+h)-f(x-h)|=0$.

Show that (a) implies (b). Also give a counterexample to show that the converse statement, (b) implies (a), need not be true.
*4. (a) Show that a monotonic surjective function $f: \mathbb{R} \rightarrow \mathbb{R}$ must be continuous.
(b) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is monotonic but not continuous. Prove both of these statements.
5. Let $f$ be defined on $[0,1]$ as follows:

$$
f(x)=\left\{\begin{array}{cl}
0 & \text { if } x \text { is irrational } \\
1 / n & \text { if } x \text { is the rational number } m / n \text { in lowest terms }
\end{array}\right.
$$

(a) Show that $f$ is continuous at $x$ if and only if $x$ is irrational.
(b) Show that $\int_{0}^{1} f(x) d x=0$.

