Mathematics V1207x
Honors Mathematics A
Assignment #5
Due October 16, 2015

*1. What is \(\sup \{ \frac{n-1}{n} \mid n \in \mathbb{N} \setminus \{0\} \} \)? What is \(\inf \{ \frac{n+1}{n} \mid n \in \mathbb{N} \setminus \{0\} \} \)?
Prove your answers correct.

*2. A function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is said to be even if \(f(-x) = f(x) \) for all \(x \), and odd if \(f(-x) = -f(x) \) for all \(x \).
 (a) Prove that if \(f \) is both odd and even, then \(f(x) = 0 \) for all \(x \).
 (b) Suppose \(f \) is integrable on every closed interval \([a, b]\), and let \(g(x) = \int_0^x f(t) \, dt \).
 Prove that if \(f \) is odd, then \(g \) is even, and that if \(f \) is even, then \(g \) is odd.

*3. Prove that \(f : [a, b] \rightarrow \mathbb{R} \) is integrable if and only if for all \(\varepsilon > 0 \), there exist step functions \(s, t : [a, b] \rightarrow \mathbb{R} \) such that \(s \leq f \leq t \) and \(\int_a^b (t - s)(x) \, dx < \varepsilon \).
 (Hint: substitute \(\varepsilon/2 \) for \(\varepsilon \) in the approximation property of the sup.)

*4. Prove that \(\int_a^b x \, dx = \frac{(b^2 - a^2)}{2} \) in the following steps.
 (a) Use the properties of integration to show that the general case is implied by the case where \(a = 0 \) and \(b = 1 \).
 (b) Establish that \(\int_0^1 x \, dx = 1/2 \). (Hint: previous exercises may be useful.)

*5. If \(a \leq c \leq d \leq b \in \mathbb{R} \), and \(f : [a, b] \rightarrow \mathbb{R} \) is integrable on \([a, b]\), prove that it is integrable on \([c, d]\). (Hint: previous exercises may be useful.)

*6. Suppose that \(f \) is integrable on \([a, b]\). Show that \(|f| \) is integrable on \([a, b]\).
 (Hint: if \(s \) and \(t \) are step functions such that \(s \leq f \leq t \) and \(\int(t - s)(x) \, dx < \varepsilon \), and if a partition for both \(s \) and \(t \) is chosen, what step functions with this partition best approximate \(f \) above and below? Their definition will involve several cases.)

*7. For all \(x \in \mathbb{R} \) and \(n \in \mathbb{N} \), define the \(n \)th power \(x^n \in \mathbb{R} \) recursively (that is, inductively) by \(x^0 = 1 \) and \(x^{n+1} = x \cdot x^n \).
 (a) Using this definition, prove that the function \(f(x) = x^n \) is monotone on \((-\infty, 0]\),
 and also on \([0, \infty)\).
 (b) Prove that this function is integrable on any closed interval \([a, b]\).
 (c) Prove that any polynomial function \(g(x) = \sum_{i=0}^n c_i x^i \), where the \(c_i \) are constants,
 is integrable on \([a, b]\).
