Mathematics V1207x Honors Mathematics A

Assignment #5 Due October 16, 2015

Reading: Apostol, §2.18, pp. 120–124, and §§3.1–3.7, pp. 126–141.

- *1. What is $\sup \{\frac{n-1}{n} \mid n \in \mathbb{N} \setminus \{0\}\}$? What is $\inf \{\frac{n+1}{n} \mid n \in \mathbb{N} \setminus \{0\}\}$? Prove your answers correct.
- *2. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be *even* if f(-x) = f(x) for all x, and *odd* if f(-x) = -f(x) for all x.
 - (a) Prove that if f is both odd and even, then f(x) = 0 for all x.
 - (b) Suppose f is integrable on every closed interval [a, b], and let $g(x) = \int_0^x f(t) dt$. Prove that if f is odd, then g is even, and that if f is even, then g is odd.
- *3. Prove that $f : [a, b] \to \mathbb{R}$ is integrable if and only if for all $\varepsilon > 0$, there exist step functions $s, t : [a, b] \to \mathbb{R}$ such that $s \le f \le t$ and $\int_a^b (t - s)(x) dx < \varepsilon$. (Hint: substitute $\varepsilon/2$ for ε in the approximation property of the sup.)
- *4. Prove that ∫_a^b x dx = (b² − a²)/2 in the following steps.
 (a) Use the properties of integration to show that the general case is implied by the case where a = 0 and b = 1.
 - (b) Establish that $\int_0^1 x \, dx = 1/2$. (Hint: previous exercises may be useful.)
- *5. If $a \leq c \leq d \leq b \in \mathbb{R}$, and $f : [a, b] \to \mathbb{R}$ is integrable on [a, b], prove that it is integrable on [c, d]. (Hint: previous exercises may be useful.)
- *6. Suppose that f is integrable on [a, b]. Show that |f| is integrable on [a, b]. (Hint: if s and t are step functions such that $s \leq f \leq t$ and $\int (t - s) < \varepsilon$, and if a partition for both s and t is chosen, what step functions with this partition best approximate f above and below? Their definition will involve several cases.)
- *7. For all $x \in \mathbb{R}$ and $n \in \mathbb{N}$, define the *nth power* $x^n \in \mathbb{R}$ recursively (that is, inductively) by $x^0 = 1$ and $x^{n+1} = x \cdot x^n$.
 - (a) Using this definition, prove that the function $f(x) = x^n$ is monotone on $(-\infty, 0]$, and also on $[0, \infty)$.
 - (b) Prove that this function is integrable on any closed interval [a, b].
 - (c) Prove that any polynomial function $g(x) = \sum_{i=0}^{n} c_i x^i$, where the c_i are constants, is integrable on [a, b].
 - 8. Apostol §2.19 (pp. 124–25) 19, 21.
 - 9. Apostol §3.6 (p. 138) 3, *5, 6, 7, *8, 21.