Mathematics V1207x Honors Mathematics A

Assignment \#5

Due October 16, 2015
Reading: Apostol, $\S 2.18$, pp. 120-124, and §§3.1-3.7, pp. 126-141.
*1. What is $\sup \left\{\left.\frac{n-1}{n} \right\rvert\, n \in \mathbb{N} \backslash\{0\}\right\}$? What is $\inf \left\{\left.\frac{n+1}{n} \right\rvert\, n \in \mathbb{N} \backslash\{0\}\right\}$?
Prove your answers correct.
*2. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be even if $f(-x)=f(x)$ for all x, and odd if $f(-x)=-f(x)$ for all x.
(a) Prove that if f is both odd and even, then $f(x)=0$ for all x.
(b) Suppose f is integrable on every closed interval [a, b], and let $g(x)=\int_{0}^{x} f(t) d t$. Prove that if f is odd, then g is even, and that if f is even, then g is odd.
*3. Prove that $f:[a, b] \rightarrow \mathbb{R}$ is integrable if and only if for all $\varepsilon>0$, there exist step functions $s, t:[a, b] \rightarrow \mathbb{R}$ such that $s \leq f \leq t$ and $\int_{a}^{b}(t-s)(x) d x<\varepsilon$.
(Hint: substitute $\varepsilon / 2$ for ε in the approximation property of the sup.)
*4. Prove that $\int_{a}^{b} x d x=\left(b^{2}-a^{2}\right) / 2$ in the following steps.
(a) Use the properties of integration to show that the general case is implied by the case where $a=0$ and $b=1$.
(b) Establish that $\int_{0}^{1} x d x=1 / 2$. (Hint: previous exercises may be useful.)
*5. If $a \leq c \leq d \leq b \in \mathbb{R}$, and $f:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$, prove that it is integrable on $[c, d]$. (Hint: previous exercises may be useful.)
*6. Suppose that f is integrable on $[a, b]$. Show that $|f|$ is integrable on $[a, b]$.
(Hint: if s and t are step functions such that $s \leq f \leq t$ and $\int(t-s)<\varepsilon$, and if a partition for both s and t is chosen, what step functions with this partition best approximate f above and below? Their definition will involve several cases.)
*7. For all $x \in \mathbb{R}$ and $n \in \mathbb{N}$, define the nth power $x^{n} \in \mathbb{R}$ recursively (that is, inductively) by $x^{0}=1$ and $x^{n+1}=x \cdot x^{n}$.
(a) Using this definition, prove that the function $f(x)=x^{n}$ is monotone on $(-\infty, 0]$, and also on $[0, \infty)$.
(b) Prove that this function is integrable on any closed interval $[a, b]$.
(c) Prove that any polynomial function $g(x)=\sum_{i=0}^{n} c_{i} x^{i}$, where the c_{i} are constants, is integrable on $[a, b]$.
8. Apostol §2.19 (pp. 124-25) 19, 21.
9. Apostol $\S 3.6$ (p. 138) $3, * 5,6,7, * 8,21$.

