Mathematics V1207x Honors Mathematics A

Assignment \#4
Due October 9, 2015

Reading: Apostol, 1.12-1.27, pp. 64-85, and 2.1-2.7, pp. 88-104.

1. Apostol $\S 1.11$ (pp. 63-64) 2, 4a, *4b, 4d, 5. (Here the greatest integer $[x]$ is defined to be the unique integer n such that $n \leq x<n+1$. You supposedly proved that this exists in an unstarred problem on Assignment \#3.)
2. Apostol $\S 1.15$ (pp. $70-72$) $1,3, * 5,10, * 11, * 15,16,17$. (In 5 , you may assume that every nonnegative number has a unique nonnegative square root, as proved in Theorem I.35. In 11, if true, give the briefest possible sketch of the proof; if false, give a counterexample.)
*3. Prove the reflection property of integration: if f is integrable on $[a, b]$, then

$$
\int_{-b}^{-a} f(-x) d x=\int_{a}^{b} f(x) d x
$$

(First prove it for step functions.)
4. Apostol §1.26 (pp. 83-84) *25, 27.
*5. Prove that if f and $|f|$ are both integrable on $[a, b]$, then

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Notice the similarity to the triangle inequality!
(Hint: you may find it convenient to use 8 from Assignment \#3.)
6. Is it possible for $|f|$ to be integrable but not f ? Give a proof or counterexample.

