Mathematics V1207x Honors Mathematics A

Assignment #3 Due October 2, 2015

Reading: Apostol 1.1–1.10, pp. 48–63.

*1. Let $S \subset \mathbb{N}$ be a subset of the natural numbers. An element $m \in S$ is called a *least* element if for all $n \in S$, $m \leq n$. (That is, m is inf S and is also an element of S.)

(a) Prove by induction that for all $k \in \mathbb{N}$, $\{\ell \in \mathbb{N} \mid \ell \leq k\}$ either contains a least element for S or does not contain any elements of S.

(b) Use (a) to prove the *well-ordering principle*: every nonempty subset of \mathbb{N} has a least element.

- 2. Apostol §I 3.12 (pp. 28–29) #1, 3*, 4*, 6*, 7, 10, 11. (Hint: Use the well-ordering principle for #4.)
- *3. Suppose $S \subseteq \mathbb{R}$ and $c \in \mathbb{R}$. Let $cS = \{cx \mid x \in S\} \subseteq \mathbb{R}$. (Think of it as "stretching" S by a factor of c.)
 - (a) Show that if c > 0 and S is bounded above, then cS is bounded above.
 - (b) Show that if c > 0, then $\sup cS = c \sup S$.
 - (c) Give an example where c < 0 and $\sup cS \neq c \sup S$.
- **4.** Suppose $S \subseteq \mathbb{R}$ and $t \in \mathbb{R}$. Show that $t = \sup S$ if and only if both of the following are true: (a) t is an upper bound for S, and (b) for all $\varepsilon > 0$, there exists $x \in S$ such that $x > t \varepsilon$.
- *5. Suppose that $S, T \subseteq \mathbb{R}$, both S and T are nonempty and bounded above, and there is a bijective function $f : S \to T$ such that $x \ge f(x)$ for all $x \in S$. Show that $\sup S \ge \sup T$. Can you say more if you know x > f(x) for all $x \in S$?
- *6. Prove that the Cartesian product of two finite sets is finite. (Hint: Consider first the case $S = \{1, ..., m\}$ and $T = \{1, ..., n\}$ and try induction on m. Then deduce the general case from this one.)
 - 7. Prove that the intersection and union of two finite sets is finite. (You'll have to define a function to a subset of \mathbb{N} and show that it is bijective. It might be convenient to use the well-ordering principle again.)
- *8. Prove that for all real $\epsilon > 0$ and all $x \in \mathbb{R}$, $|x| < \epsilon$ if and only if $-\epsilon < x < \epsilon$.
- **9.** Apostol §I 4.9 (p. 43) #1bdfg, 1j*.