Mathematics V1207x Honors Mathematics A

Assignment \#3

Due October 2, 2015

Reading: Apostol 1.1-1.10, pp. 48-63.
*1. Let $S \subset \mathbb{N}$ be a subset of the natural numbers. An element $m \in S$ is called a least element if for all $n \in S, m \leq n$. (That is, m is $\inf S$ and is also an element of S.)
(a) Prove by induction that for all $k \in \mathbb{N},\{\ell \in \mathbb{N} \mid \ell \leq k\}$ either contains a least element for S or does not contain any elements of S.
(b) Use (a) to prove the well-ordering principle: every nonempty subset of \mathbb{N} has a least element.
2. Apostol §I 3.12 (pp. 28-29) \#1, $3^{*}, 4^{*}, 6^{*}, 7,10,11$. (Hint: Use the well-ordering principle for \#4.)
*3. Suppose $S \subseteq \mathbb{R}$ and $c \in \mathbb{R}$. Let $c S=\{c x \mid x \in S\} \subseteq \mathbb{R}$. (Think of it as "stretching" S by a factor of c.)
(a) Show that if $c>0$ and S is bounded above, then $c S$ is bounded above.
(b) Show that if $c>0$, then $\sup c S=c \sup S$.
(c) Give an example where $c<0$ and $\sup c S \neq c \sup S$.
4. Suppose $S \subseteq \mathbb{R}$ and $t \in \mathbb{R}$. Show that $t=\sup S$ if and only if both of the following are true: (a) t is an upper bound for S, and (b) for all $\varepsilon>0$, there exists $x \in S$ such that $x>t-\varepsilon$.
*5. Suppose that $S, T \subseteq \mathbb{R}$, both S and T are nonempty and bounded above, and there is a bijective function $f: S \rightarrow T$ such that $x \geq f(x)$ for all $x \in S$. Show that $\sup S \geq \sup T$. Can you say more if you know $x>f(x)$ for all $x \in S$?
*6. Prove that the Cartesian product of two finite sets is finite. (Hint: Consider first the case $S=\{1, \ldots, m\}$ and $T=\{1, \ldots, n\}$ and try induction on m. Then deduce the general case from this one.)
7. Prove that the intersection and union of two finite sets is finite. (You'll have to define a function to a subset of \mathbb{N} and show that it is bijective. It might be convenient to use the well-ordering principle again.)
*8. Prove that for all real $\epsilon>0$ and all $x \in \mathbb{R},|x|<\epsilon$ if and only if $-\epsilon<x<\epsilon$.
9. Apostol §I 4.9 (p. 43) \#1bdfg, $1 \mathrm{j}^{*}$.

