Mathematics V1207x Honors Mathematics A

Assignment #12 Due Tuesday, December 15, 2015

Reading: Apostol §12.1–12.10, pp. 445–460, and §13.1–13.7, pp. 471–482. In Apostol (5 points each):

§12.4 (p. 450) 5, *6, *7, 11a.
§12.8 (p. 456) 2, 3, *4, 10, *19, 20.
§12.11 (p. 460) 2, 7, 13, 17, 18, 19, 20.
§13.5 (p. 477) 5, 11, 12.
§15.5 (p. 555) 1, 2, 4, 5, 8, *9, *10, *11, *21, 24, 25, 29, 32.

Notes: Brevity is acceptable and encouraged. Apostol calls V_n what we called \mathbb{R}^n in class. Two lines $\{X + tY | t \in \mathbb{R}\}$ and $\{X' + tY' | t \in \mathbb{R}\}$ in \mathbb{R}^n are said to be *parallel* if Y is a scalar multiple of Y'.

Also do the following.

- *1. If W_1 and W_2 are subspaces of a vector space V, show that $W_1 \cap W_2$ is also a subspace. Give a specific example to show that $W_1 \cup W_2$ need not be a subspace.
- **2.** Prove that $F: U \to V$ is linear if and only if for all $n \in \mathbb{N}$ and for all $X_1, \ldots, X_n \in U$ and all $c_1, \ldots, c_n \in \mathbb{R}$,

$$F\left(\sum_{i=1}^{n} c_i X_i\right) = \sum_{i=1}^{n} c_i F(X_i).$$

- *3. Prove that if $F: U \to V$ is linear, then the kernel, ker F, is a subspace of U and the image, im F, is a subspace of V.
- *4. Let $F: U \to V$ be linear. Prove that it is injective if and only if ker $F = \{\vec{0}\}$.
- 5. If U, V are vector spaces, prove that the set $\mathcal{L}(U, V)$ of linear maps $U \to V$ is a subspace of the vector space $\mathcal{F}(U, V)$ of all maps $U \to V$.
- ***6.** Prove that the composition of two linear maps is linear.

CONTINUED OVERLEAF...

- (a) If G: V → W is linear and fixed, prove that the map L_G: L(U, V) → L(U, W) given by L_G(F) = G ∘ F is linear.
 (b) If F: U → V is linear and fixed, prove that the map R_F: L(V, W) → L(U, W) given by R_F(G) = G ∘ F is linear.
- *8. Given a matrix $A \in M_{m \times n}$, show that the map $T_A : \mathbb{R}^n \to \mathbb{R}^m$ given by

$$T_A(x_1, \dots, x_n) = \left(\sum_{j=1}^n A_{1j} x_j, \sum_{j=1}^n A_{2j} x_j, \dots, \sum_{j=1}^n A_{mj} x_j\right)$$

is linear.

*9. Show that the map $T: M_{m \times n} \to \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ given by $T(A) = T_A$ is linear.