Mathematics V1207x Honors Mathematics A

Assignment \#12
Due Tuesday, December 15, 2015
Reading: Apostol §12.1-12.10, pp. 445-460, and §13.1-13.7, pp. 471-482.
In Apostol (5 points each):
$\S 12.4($ p. 450) 5, *6, *7, 11a.
$\S 12.8$ (p. 456) 2, $3, *_{4}, 10,{ }^{*} 19,20$.
$\S 12.11$ (p. 460) 2, 7, 13, 17, 18, 19, 20.
§13.5 (p. 477) 5, 11, 12.
$\S 15.5$ (p. 555) 1, 2, 4, 5, 8, *9, *10, *11, *21, 24, 25, 29, 32.
Notes: Brevity is acceptable and encouraged. Apostol calls V_{n} what we called \mathbb{R}^{n} in class. Two lines $\{X+t Y \mid t \in \mathbb{R}\}$ and $\left\{X^{\prime}+t Y^{\prime} \mid t \in \mathbb{R}\right\}$ in \mathbb{R}^{n} are said to be parallel if Y is a scalar multiple of Y^{\prime}.

Also do the following.
*1. If W_{1} and W_{2} are subspaces of a vector space V, show that $W_{1} \cap W_{2}$ is also a subspace. Give a specific example to show that $W_{1} \cup W_{2}$ need not be a subspace.
2. Prove that $F: U \rightarrow V$ is linear if and only if for all $n \in \mathbb{N}$ and for all $X_{1}, \ldots, X_{n} \in U$ and all $c_{1}, \ldots, c_{n} \in \mathbb{R}$,

$$
F\left(\sum_{i=1}^{n} c_{i} X_{i}\right)=\sum_{i=1}^{n} c_{i} F\left(X_{i}\right)
$$

*3. Prove that if $F: U \rightarrow V$ is linear, then the kernel, ker F, is a subspace of U and the image, $\operatorname{im} F$, is a subspace of V.
*4. Let $F: U \rightarrow V$ be linear. Prove that it is injective if and only if $\operatorname{ker} F=\{\overrightarrow{0}\}$.
5. If U, V are vector spaces, prove that the set $\mathcal{L}(U, V)$ of linear maps $U \rightarrow V$ is a subspace of the vector space $\mathcal{F}(U, V)$ of all maps $U \rightarrow V$.
*6. Prove that the composition of two linear maps is linear.
7. (a) If $G: V \rightarrow W$ is linear and fixed, prove that the map $L_{G}: \mathcal{L}(U, V) \rightarrow \mathcal{L}(U, W)$ given by $L_{G}(F)=G \circ F$ is linear.
(b) If $F: U \rightarrow V$ is linear and fixed, prove that the map $R_{F}: \mathcal{L}(V, W) \rightarrow \mathcal{L}(U, W)$ given by $R_{F}(G)=G \circ F$ is linear.
*8. Given a matrix $A \in M_{m \times n}$, show that the map $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by

$$
T_{A}\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{j=1}^{n} A_{1 j} x_{j}, \sum_{j=1}^{n} A_{2 j} x_{j}, \ldots, \sum_{j=1}^{n} A_{m j} x_{j}\right)
$$

is linear.
*9. Show that the map $T: M_{m \times n} \rightarrow \mathcal{L}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$ given by $T(A)=T_{A}$ is linear.

