Mathematics V1207x Honors Mathematics A

Assignment \#11

Due Tuesday, December 8, 2015

Reading: Apostol, $\S \S 11.8-11.10$, pp. 431-436.
Problems 4 and $\mathbf{5}$ are the remarkable results referred to in the lecture as Theorems 1 and 2. Hint: Do the problems in order.
*1. Let m be any positive integer.
(a) Show that for all $y \in \mathbb{R}, y \geq m$ implies $2 y-\frac{m}{y} \geq 1$.
(b) Show there exists $c \in \mathbb{R}$ such that $z \geq m$ implies $z^{2}-m \ln z \geq z+c$.
(c) Show that $w:[m, \infty) \rightarrow \mathbb{R}$ given by $w(z)=z^{2}-m \ln z$ is an increasing and unbounded function of z.
(d) Show that for all $\epsilon>0$, there exists $\delta>0$ such that for all $x \in \mathbb{R}$,

$$
0<|x|<\delta \Rightarrow-\frac{1}{x^{2}}-m \ln |x|<\ln \epsilon
$$

*2. Apostol $\S 7.17$ (p. 304) *31.
*3. (a) Let

$$
g(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

Show that $g: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function which is positive on $(0, \infty)$.
[Be careful about smoothness at 0.] Also sketch its graph.
(b) With g as above, let $h(x)=g(1+x) g(1-x)$.

Then let $A=\int_{-1}^{1} h(t) d t$, and let $F(x)=\frac{1}{A} \int_{-1}^{x} h(t) d t$.
Show that $F: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function such that $F(x)=0$ for $x<-1$ and $F(x)=1$ for $x>1$. Also sketch its graph.
(c) Show there exists a smooth function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ such that $0 \leq \phi(x) \leq 1$ for all $x, \phi(x)=1$ for $x \in(-1,1)$, and $\phi(x)=0$ for $x \notin[-3,3]$. Such a function ϕ is called a "bump function". Sketch it too.

CONTINUED OVERLEAF...
*4. If $g, h:(a, b) \rightarrow \mathbb{R}$ are two smooth functions and c, d are distinct points in (a, b), show that there exists $\delta>0$ and a smooth function $f:(a, b) \rightarrow \mathbb{R}$ such that for all $x \in(a, b)$,

$$
|x-c|<\delta \Rightarrow f(x)=g(x)
$$

and

$$
|x-d|<\delta \Rightarrow f(x)=h(x) .
$$

[Hint: multiply g by a function closely related to ϕ. You should be able to take $\delta=|c-d| / 6$.]
*5. Suppose that $f, g:(a, b) \rightarrow \mathbb{R}$ are two analytic functions, and that there exist $c \in(a, b)$ and $\delta>0$ such that for all $x \in(a, b),|x-c|<\delta$ implies $f(x)=g(x)$. Show that $f=g$. More colloquially, if two analytic functions on an open interval agree on some open subinterval, then they agree everywhere. [Hint: let

$$
U=\{x \in[c, b) \mid f(y)=g(y) \text { for all } y \in[c, x]\} .
$$

Show that this has a supremum, and study $f-g$ near the supremum.]

