Mathematics V1207x

Honors Mathematics A

Answers to Final Exam

December 21, 2015

1. True: for all $z \in U$, there exists $y \in T$ such that $z=g(y)$, and $x \in S$ such that $y=f(x)$, so $z=g(f(x))=g \circ f(x)$.
2. True: differentiable implies continuous, which implies integrable.
3. False: indefinite integrals are continuous, but this isn't.
4. True: if $\left|a_{n}\right| \leq B$, then $\sum\left|a_{n}\right| 2^{n} / n$! converges by comparison to $\sum B 2^{n} / n$!, which converges by the ratio test. (In fact, the sum is $B e^{2}$.) The original series hence converges absolutely, so it converges.
5. False: $G\left(2 \mathrm{id}_{V}\right)=\left(2 \mathrm{id}_{V}\right) \circ\left(2 \mathrm{id}_{V}\right)=4 \mathrm{id}_{V} \neq 2 \mathrm{id}_{V}=2 \mathrm{id}_{V} \circ \mathrm{id}_{V}=2 G\left(\mathrm{id}_{V}\right)$.
6. We say $c \in[a, b]$ is an absolute maximum of f if for all $x \in[a, b], f(x) \leq f(c)$; we say it is a relative maximum of f if there exists $\delta>0$ such that for all $x \in[a, b],|x-c|<\delta \Longrightarrow f(x) \leq$ $f(c)$.
7. First fundamental theorem: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is is integrable and $c \in[a, b]$. Let $g(x)=$ $\int_{c}^{y} f(y) d y$. If f is continuous at $x \in(a, b)$, then g is differentiable at x and $g^{\prime}(x)=f(x)$. Second fundamental theorem: Suppose g is an antiderivative of a function f continuous on some interval I. Then for any a, b in that interval, $g(b)-g(a)=\int_{a}^{b} f(x) d x$.
8. Let $f_{n}: I \rightarrow \mathbb{R}$ be a sequence of functions defined on an interval I. Suppose there exists a sequence of numbers $M_{n} \in \mathbb{R}$ such that $\sum_{n=0}^{\infty} M_{n}$ converges and for all $x \in I,\left|f_{n}(x)\right| \leq M_{n}$. Then the series of functions $\sum_{n=0}^{\infty} f_{n}$ converges uniformly (and absolutely) on I.
9. For all $X, Y \in \mathbb{R}^{n},|X \cdot Y| \leq\|X\|\|Y\|$.
10. Note that $|f(0)| \leq|3 \cdot 0|=0$, so $f(0)=0$. Given $\epsilon>0$, take $\delta=\epsilon / 3$. Then for all $x \in \mathbb{R}$, $|x-0|<\delta \Longrightarrow|f(x)| \leq|3 x|=3|x|<3 \delta=3 \epsilon / 3=\epsilon$, so $\lim _{x \rightarrow 0} f(x)=0=f(0)$ and f is continuous at 0 .
11. Let S be the image of f. By the extreme value theorem, f has an absolute minimum x and absolute maximum y. Let $c=f(x)$ and $d=f(y)$. By the definitions of absolute minimum and maximum, $S \subset[c, d]$. Given any $e \in[c, d]$, by the intermediate value theorem there exists $z \in[a, b]$ such that $e=f(z)$. Hence $[c, d] \subset S$ as well.
12. First note that this is true for $x=1$ as $\ln 1=0$. By the comparison theorem for integrals $0=\int_{1}^{x} 0 d t \leq \int_{1}^{x} d t / t=\ln x$ for $x \geq 1$, so $1 \leq 1+\ln x$ for $x \geq 1$, and by the comparison theorem again, $x-1=\int_{1}^{x} 1 d x \leq \int_{1}^{x}(1+\ln x) d x=x \ln x$.
Alternative: the function $f(x)=x \ln x-x+1$ has derivative $\ln x>0$ for $x>1$, so it is strictly increasing on $[1, \infty)$, but $f(1)=0$, so for $x>1, f(x)>0$.
Alternative: applying the mean-value theorem to \ln on $[1, x]$, there exists $z \in(1, x)$ such that $1 / z=\ln ^{\prime}(z)=\frac{\ln x-\ln 1}{x-1}=(\ln x) /(x-1)$. Hence $(x-1) /(\ln x)=z \leq x$ for $x>1$.
13. Substituting x^{2} for x in the geometric series, we find that $f(x)=\sum_{n=0}^{\infty} x^{2 n}$ for $\left|x^{2}\right|<1$, that is, for $|x|<1$. Since this is a power series centered at 0 converging to $f(x)$, by a theorem from class it must agree with the Taylor series at 0 , namely $\sum_{m=0}^{\infty} \frac{f^{(m)}(0) x^{m}}{m!}$. The coefficient of x^{600} is therefore $1=f^{(600)}(0) / 600$!, so $f^{(600)}(0)=600$!.
14. Since $\sum_{n=0}^{\infty} a_{n}$ is convergent, $\lim _{n \rightarrow \infty} a_{n}=0$ by A9\#5 = Proposition 3. Take $\epsilon=1$; then there exists $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}, n \geq N \Longrightarrow\left|a_{n}\right|<1$, hence $a_{n}<1$ since all terms are nonnegative. Then $0 \leq a_{n} b_{n} \leq b_{n}$, so $\sum_{n=N}^{\infty} a_{n} b_{n}$ converges by comparison with $\sum_{n=N}^{\infty} b_{n}$, so $\sum_{n=0}^{\infty} a_{n} b_{n}$ converges by A9 $\# 2=$ Proposition 1.
Challenge problem: take $a_{n}=b_{n}=(-1)^{n} / \sqrt{n}$. Then $\sum_{n=1}^{\infty} a_{n}$ is convergent by the alternating series test, but $\sum_{n=1}^{\infty} a_{n}^{2}$ is the harmonic series.
15. If $S, T: V \rightarrow W$ are linear and $X, Y \in V$, then $(S+T)(X+Y)=S(X+Y)+T(X+Y)=$ $S(X)+S(Y)+T(X)+T(Y)=S(X)+T(X)+S(Y)+T(Y)=(S+T)(X)+(S+T)(Y)$. Also, if S, T are as before, $X \in V$, and $c \in \mathbb{R}$, then $(S+T)(c X)=S(c X)+T(c X)=$ $c S(X)+c T(X)=c(S(X)+T(X))=c((S+T)(X))=(c(S+T))(X)$. Hence $S+T$ is linear.
If $S: V \rightarrow W$ is linear, $d \in \mathbb{R}$, and $X, Y \in V$, then $(d S)(X+Y)=d(S(X+Y))=$ $d(S(X)+S(Y))=d(S(X))+d(S(Y))=(d S)(X)+(d S)(Y)$. Also, if S, d are as before, $X \in V$, and $c \in \mathbb{R}$, then $(d S)(c X)=d(S(c X))=d(c(S(X))=(d c)(S(X))=c(d S)(X)$. Hence $d S$ is linear.
16. Observe first that for smooth f, g and for $t \in \mathbb{R}$, we have $(f+g)^{(n)}(0)=f^{(n)}(0)+g^{(n)}(0)$ and $(t f)^{(n)}(0)=t f^{(n)}(0)$, both by induction on n : the case $n=0$ is true by definition, and the induction step follows directly from the linearity of the derivative.
(a) We know that V is a nonempty subset of the vector space $\mathcal{F}(\mathbb{R}, \mathbb{R})$. If f and g are analytic, then the Taylor series of $f+g$ at c is the sum of those for f and g, and the Taylor series of $t f$ at c is t times that of f, by the observations above. Hence, if the Taylor series of f and g, respectively, at c converge to f and g with positive radii of convergence R and R^{\prime}, then their sum converges with radius of convergence at least $\min \left(R, R^{\prime}\right)$, and that of $t f$ converges with radius of convergence R. Hence $f+g$ and $t f$ are analytic [this was actually stated in class so you could just quote it], so V is a subspace.
(b) The linearity of the map G amounts to showing $G(f+g)=G(f)+G(g)$ and $G(t f)=$ $t G(f)$, which follows directly from the observations at the beginning.
(c) Yes, it is injective as it has kernel $\{0\}$: if $G(f)=0$, then the Taylor series of f at 0 is 0 , and then $f=0$ by A11\#5.
Challenge problem: all similar, but it is not injective as $f(x)=e^{-1 / x^{2}}$ if $x \neq 0, f(x)=0$ is $x=0$ is now in the kernel of G.
