1. Apostol §11.7 (pp. 430–431) 17, *18.

2. Let \(\{a_n\} \) be an increasing convergent sequence with limit \(a \). Show that for each \(n \), \(a_n \leq a \).

*3. Let \(\{a_n\} \) be a convergent sequence. Show that there exists \(c \in \mathbb{R} \) such that for all \(n \), \(|a_n| \leq c \). [Hint: any finite set has a maximum element.]

*4. Let \(f_n : [a, b] \to \mathbb{R} \) be a sequence of integrable functions converging uniformly to \(f : [a, b] \to \mathbb{R} \). Prove that \(f \) is integrable and

\[
\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx.
\]

[Don’t assume the \(f_n \) are continuous. You might want to use #2 from assignment 5.]

*5. Let \(f_n(x) = \frac{x}{1 + nx^2} \).

(a) Find \(f(x) = \lim_{n \to \infty} f_n(x) \), and \(g(x) = \lim_{n \to \infty} f'_n(x) \).

(b) Prove that for all \(x \in \mathbb{R} \), \(|f_n(x)| \leq \sqrt{1/n} \). [Hint: find the local extrema.]

Do the \(f_n \) converge uniformly? Why or why not?

(c) Prove \(f \) is differentiable at every \(x \in \mathbb{R} \). For what \(x \) is \(f'(x) = g(x) \)?

6. What “theorem” is disproved by the previous problem?

7. Let \(I \subseteq \mathbb{R} \) be any interval, and let \(\{f_n\} \) be a sequence of functions \(I \to \mathbb{R} \). Prove that if \(f_n \to f \) uniformly for some \(f \), and if each \(f_n \) is bounded, then the sequence is uniformly bounded, that is, there exists a single \(M \in \mathbb{R} \) such that for all \(n \in \mathbb{N} \) and \(x \in I \), \(|f_n(x)| \leq M \).

8. If \(f_n \) and \(g_n \) are sequences of bounded functions on an interval \(I \), and \(f_n \to f \) and \(g_n \to g \), both uniformly, prove that

(a) \(cf_n \to cf \) uniformly for any \(c \in \mathbb{R} \);

*(b) \(f_n + g_n \to f + g \) uniformly;

(c) \(f_n g_n \to fg \) uniformly. [Harder. Use uniform boundedness and some ingenuity.]

*9. Prove that the series below is everywhere convergent to a continuous function that can be integrated term by term:

\[
\sum_{n=0}^{\infty} \frac{1}{2^n + x^{2n}}.
\]