Mathematics V1208y Honors Mathematics B

Practice Midterm Exam

March 9, 2016

- 1. State the theorem on the existence and uniqueness of the determinant.
- **2.** (a) If A is a square matrix with real entries, prove that AA^{T} is symmetric.

(b) Show that the symmetric matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 3 & 1 \end{pmatrix}$ cannot be expressed as AA^T for any square A with real entries.

- **3.** Let A be a square matrix with complex entries.
 - (a) Prove that $\det A^* = \overline{\det A}$ by reduction by minors.
 - (b) If λ is an eigenvalue of A, show that $\overline{\lambda}$ is an eigenvalue of A^* .
- 4. Let $V \subset \mathcal{F}([-1,1],\mathbb{R})$ be the space of continuous functions $[-1,1] \to \mathbb{R}$, with Euclidean inner product given by

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g(x) \, dx.$$

Find an orthonormal basis for the subspace spanned by $1, x, x^2$.

(Apply the Gram-Schmidt process to this subspace.)

5. (a) Find the inverse of the matrix $B = \begin{pmatrix} 0 & 1 & 3 \\ 1 & 0 & 1 \\ 2 & 0 & 1 \end{pmatrix}$.

(b) If
$$\vec{c} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$$
, find all solutions \vec{x} of the inhomogeneous system $B\vec{x} = \vec{c}$.

- 6. Let A be a square matrix with real entries. If λ is a complex eigenvalue of A, prove that $\overline{\lambda}$ is also an eigenvalue of A.
- 7. (a) If X, Y are vectors in a real Euclidean space, prove that $\langle X, Y \rangle = 0$ if and only if ||X Y|| = ||X + Y||.

(b) Give a counterexample showing that this is false in a complex Hermitian space.

ANSWERS OVERLEAF...

Answers to Practice Midterm

1. There exists an unique det : $M_{n \times n} \to \mathbb{R}$ which, when expressed as a function det $(\vec{a}_1, \ldots, \vec{a}_n)$ of the rows $\vec{a}_1, \ldots, \vec{a}_n$ of $A \in M_{n \times n}$, satisfies the following:

D1: For any $i \in \{1, \ldots, n\}$ and any $c \in \mathbb{R}$, $\det(\vec{a}_1, \ldots, c\vec{a}_i, \ldots, \vec{a}_n) = c \det(\vec{a}_1, \ldots, \vec{a}_n)$. D2: For any $i \in \{1, \ldots, n\}$ and any $\vec{b}_i \in \mathbb{R}^n$,

 $\det(\vec{a}_1,\ldots,\vec{a}_i+\vec{b}_i,\ldots,\vec{a}_n)=\det(\vec{a}_1,\ldots,\vec{a}_i,\ldots,\vec{a}_n)+\det(\vec{a}_1,\ldots,\vec{b}_i,\ldots,\vec{a}_n).$

D3: If two distinct rows are equal, say $\vec{a}_i = \vec{a}_j$ for $i \neq j$, then $\det(\vec{a}_1, \ldots, \vec{a}_n) = 0$. D4: $\det I_n = 1$.

- 2. (a) $(AA^T)^T = (A^T)^T A^T = AA^T$, so this is symmetric. (b) $\det(AA^T) = \det A \det A^T = (\det A)^2 \ge 0$, but this matrix has determinant -8.
- **3.** (a) $A^* = \overline{A^T}$ and det $A^T = \det A$, so it suffices to show det $\overline{A} = \overline{\det A}$. Proof by induction on n, where A is $n \times n$. Obvious for n = 1. If true for n - 1, det $\overline{A} = \sum_i (-1)^i \overline{a}_{i1} \det \overline{A}_{i1} = \sum_i (-1)^i \overline{a}_{i1} \overline{\det A}_{i1} = \overline{\det A}$, the 2nd equality by induction, the 3rd since conjugation commutes with taking sums and products.
 - (b) If $\det(\lambda I A) = 0$, then by (a), $\det(\overline{\lambda}I A^*) = \det(\overline{\lambda}I^* A^*) = \det(\lambda I A)^* = \overline{0} = 0$.
- 4. $||1||^2 = \langle 1,1\rangle = 2$, so let $u_1 = 1/||1|| = 1/\sqrt{2}$. Then $\langle u_1,x\rangle = 0$, so let $u_2 = x/||x|| = x/\sqrt{2/3} = \sqrt{3}x/\sqrt{2}$. Finally, $\langle u_1,x^2\rangle = \sqrt{2}/3$, and $\langle u_2,x^2\rangle = 0$, so let u_3 be $x^2 \sqrt{2}/3 u_1$ divided by its own norm, which is $(3\sqrt{5})/(2\sqrt{2})(x^2 1/3)$.
- 5. (a) Elementary row operations on the augmented matrix (B|I) lead to $(I|B^{-1})$ where $B^{-1} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & -6 & 3 \\ 0 & 2 & -1 \end{pmatrix}.$

(On a real exam, you must show your work! Also, it's wise to check $BB^{-1} = I$.) (b) Multiplying both sides by B^{-1} shows that the unique solution is $B^{-1}\vec{c} = (3, 4, -1)$.

- 6. Proof 1: let $\chi(t) = \det(tI A)$ be the characteristic polynomial of A. Then clearly χ has real coefficients, that is, $\chi(t) = c_0 + c_1t + c_2t^2 + \cdots + t^n$ with $c_i \in \mathbb{R}$. Now λ is an eigenvalue if and only if $\chi(\lambda) = 0$, but then $\chi(\bar{\lambda}) = c_0 + c_1\bar{\lambda} + c_2\bar{\lambda}^2 + \cdots + \bar{\lambda}^n = \bar{c}_0 + \bar{c}_1\bar{\lambda} + \bar{c}_2\bar{\lambda}^2 + \cdots + \bar{\lambda}^n = \bar{0} = 0$, so $\bar{\lambda}$ is also an eigenvalue. Proof 2: say $X = (x_1, \ldots, x_n)$ is the eigenvector, $AX = \lambda X$. Let $\bar{X} = (\bar{x}_1, \ldots, \bar{x}_n)$. Then since A is real, $A = \bar{A}$ and $A\bar{X} = \bar{A}\bar{X} = \bar{\lambda}\bar{X} = \bar{\lambda}\bar{X}$, so \bar{X} is an eigenvector with eigenvalue $\bar{\lambda}$.
- 7. (a) $||X Y|| = ||X + Y|| \iff \langle X Y, X Y \rangle = \langle X + Y, X + Y \rangle \iff \langle X, X \rangle \langle Y, X \rangle \langle X, Y \rangle + \langle Y, Y \rangle = \langle X, X \rangle + \langle Y, X \rangle + \langle X, Y \rangle + \langle Y, Y \rangle \iff 0 = 2 \langle Y, X \rangle + 2 \langle X, Y \rangle = 4 \langle X, Y \rangle \iff \langle X, Y \rangle = 0.$

(b) In \mathbb{C}^2 with the standard Hermitian dot product, let X = (i, 0) and Y = (1, 0). Then $\langle X, Y \rangle = i$ but $||X - Y|| = ||X + Y|| = \sqrt{2}$. (Note: the proof in (a) no longer works since we no longer have $\langle X, Y \rangle = \langle Y, X \rangle$.)