Mathematics V1208y

 Honors Mathematics IV
Answers to Final Examination

May 9, 2016
PART A: True/False. Decide whether the given statement is true or false, and give a brief reason for your answer (sketch of proof or counterexample). 4 points each.

1. True: if $A^{T}=-A$ and $B=A^{-1}$, then $I=(A B)^{T}=B^{T} A^{T}=-B^{T} A$, so $B^{T}=-A^{-1}=-B$.
2. False: $\operatorname{try}\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$.
3. True: if $\sum a_{i} \mathbf{v}_{i}=0$, then for each $j, 0=\mathbf{v}_{j} \cdot \sum a_{i} \mathbf{v}_{i}=\sum a_{i} \mathbf{v}_{j} \cdot \mathbf{v}_{i}=a_{j}\left\|\mathbf{v}_{j}\right\|^{2}$, but $\left\|\mathbf{v}_{j}\right\|^{2} \neq 0$, so $a_{j}=0$.
4. True: in fact its total derivative at every \mathbf{v} is itself, for certainly

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{L(\mathbf{v}+\mathbf{h})-L(\mathbf{v})-L(\mathbf{h})}{\|\mathbf{h}\|}=\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{\mathbf{0}}{\|\mathbf{h}\|}=\mathbf{0}
$$

5. False: C^{1} implies differentiability, which implies continuity.
6. True: the vector field is closed, and the set is star-shaped.

PART B: Shorter proofs and computations. 7 points each.
7. Since H is Hermitian, it has real eigenvalues, and by the spectral theorem, H is diagonalizable. So for some $A, A H A^{-1}=D$ where D is diagonal with real entries. But $D-I=A(H-I) A^{-1}$ is also diagonal, and its diagonal entries $d_{i i}-1$ are the eigenvalues of $H-I$. Since $d_{i i}-1$ is imaginary and $d_{i i}$ is real, $d_{i i}=1$ for all i, so $D=I$, hence $H=I$.
8. For any $\mathbf{x} \in U$, take $\epsilon=|f(\mathbf{x})|$ in the definition of continuity; then there exists δ such that $\|\mathbf{y}-\mathbf{x}\|<\delta$ implies $|f(\mathbf{y})-f(\mathbf{x})|<|f(\mathbf{x})|$, and hence $f(\mathbf{y}) \neq 0$, so that $\mathbf{y} \in U$. Therefore $B_{\delta}(\mathbf{x}) \subseteq U$.
9. Let $H(s, t)=\left(s^{2}-t^{2}, s^{2}+t^{2}, s t\right)$; then $g=f \circ H$. By the chain rule, $D_{g}(s, t)=D_{f}(H(s, t)) D_{H}(s, t)$, or

$$
\left(\begin{array}{ll}
\frac{\partial g}{\partial s} & \frac{\partial g}{\partial t}
\end{array}\right)=\left(\begin{array}{lll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z}
\end{array}\right)\left(\begin{array}{rr}
2 s & -2 t \\
2 s & 2 t \\
t & s
\end{array}\right)
$$

taking the right-hand entry yields $\partial g / \partial t=-2 t \partial f / \partial x+2 t \partial f / \partial y+s \partial f / \partial z$.
10. Let C be a curve in \mathbb{R}^{n}, parametrized by a piecewise C^{1} map $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$, and let f be a scalar field on a subset of \mathbb{R}^{n} containing $C=\gamma([a, b])$. The integral of f with respect to arclength is defined as

$$
\int_{C} f\|d \gamma\|=\int_{a}^{b} f(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t
$$

if the right-hand integral exists. (It is unchanged by a forward reparametrization of C.)
11. Let $G=\left(G_{1}, G_{2}, G_{3}\right)$. Then

$$
\begin{aligned}
\nabla \cdot\left(f^{2} G\right) & =\sum_{i=1}^{3} \frac{\partial}{\partial x_{i}}\left(f^{2} G_{i}\right) \\
& =\sum_{i=1}^{3}\left(\frac{\partial\left(f^{2}\right)}{\partial x_{i}} G_{i}+f^{2} \frac{\partial G_{i}}{\partial x_{i}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{3}\left(2 f \frac{\partial f}{\partial x_{i}} G_{i}+f^{2} \frac{\partial G_{i}}{\partial x_{i}}\right) \\
& =2 f \nabla f \cdot G+f^{2} \nabla \cdot G
\end{aligned}
$$

12. The divergence of F is the constant scalar field 2 . Let V be the unit upper ball, $V=\{(x, y, z) \in$ $\left.\mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 1, z \geq 0\right\}$, so that the boundary of V is the union of S with the disc $D=$ $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2} \leq 1, z=0\right\}$. If D is parametrized in the obvious way by the unit disc in the (x, y)-plane, it has outward normal $(0,0,1)$, so on $D, F \cdot \mathbf{n}=0$. Then by the divergence theorem, $\iint_{S} F \cdot d \mathbf{r}^{2}=\iint_{S} F \cdot d \mathbf{r}^{2}+\iint_{D} F \cdot d \mathbf{r}^{2}=\iint_{\partial V} F \cdot d \mathbf{r}^{2}=\iiint_{V} 2 d x d y d z=4 / 3 \pi$, the last equality simply because a ball of radius r has volume $4 / 3 \pi r^{3}$.

PART C: Longer proofs and computations. 10 points each.
13. By Fubini $k(t)=\int_{0}^{t^{2}} \int_{0}^{1} f(x, y) d y d x$. Let $g(z)=\int_{0}^{z} \int_{0}^{1} f(x, y) d y d x$, and let $h(t)=t^{2}$. Then $k=g \circ h$. Since $\int_{0}^{1} f(x, y) d y$ is a continuous function of x, by the 1 st fundamental theorem of calculus g is differentiable and $g^{\prime}(z)=\int_{0}^{1} f(z, y) d y$. Then by the (1-variable!) chain rule, k is differentiable with $k^{\prime}(t)=2 t \int_{0}^{1} f\left(t^{2}, y\right) d y$.
One could try to do this by differentiating under the integral without using Fubini, but this proves tricky as we need the integrand to be C^{1}. (If we assume that, then it can be done.)
14. Parametrize R by $s:[1,5] \times[-1,1] \rightarrow R$ where $s(u, v)=(u-v, u+v)$. Then $\operatorname{det} D_{s}(u, v)=2$, so the transformation formula says

$$
\iint_{R} x^{2} y d x d y=\int_{-1}^{1} \int_{1}^{5} 2\left(u^{2}-v^{2}\right) d u d v=160
$$

if I'm not wrong.
15. (a) Straightforward: the answer is $2 \mathbf{a}$.
(b) By part (a), using Stokes, this equals $\frac{1}{2} \iint_{S} \operatorname{curl} H \cdot d \mathbf{r}^{2}=\frac{1}{2} \oint_{C} H \cdot d \gamma$, where C is the unit circle in the (x, y)-plane. Using your favorite parametrization, say $\gamma(t)=(\cos t, \sin t, 0)$, you find that $H(\gamma(t))=(0,0, \cos t)$, so $H(\gamma(t)) \cdot \gamma^{\prime}(t)=0$, and the line integral is 0.
(c) Moral: If the mouth of your fishnet is in a plane parallel to the motion of the fish, you won't catch any, no matter what shape the net is.
16. The curl of F is $\partial Q / \partial x-\partial P / \partial y=h^{\prime}(x)+h^{\prime}(y) \geq 0$. Green's theorem then says that $\oint_{C_{r}} F \cdot d s=$ $\iint_{D_{r}}\left(h^{\prime}(x)+h^{\prime}(y)\right) d x d y$, where D_{r} is the disc of radius r. For $r \geq 0$, let $f_{r}(x, y)=h^{\prime}(x)+h^{\prime}(y)$ if $x^{2}+y^{2} \leq r^{2}, 0$ otherwise. Then $r^{\prime} \leq r$ implies $f_{r^{\prime}} \leq f_{r}$, so by comparison

$$
\begin{aligned}
\iint_{D_{r}^{\prime}}\left(h^{\prime}(x)+h^{\prime}(y)\right) d x d y & =\int_{-r}^{r} \int_{-r}^{r} f_{r^{\prime}}(x, y) d x d y \\
& \leq \int_{-r}^{r} \int_{-r}^{r} f_{r}(x, y) d x d y \\
& =\iint_{D_{r}}\left(h^{\prime}(x)+h^{\prime}(y)\right) d x d y
\end{aligned}
$$

17. (a) By the divergence theorem, the surface integral equals the integral of the divergence over the ball of radius r, which is now constant when $r \geq 1$, so $a=0$.
(b) By Stokes's theorem, the surface integral over the northern hemisphere equals the line integral of G over the equator; the integral over the southern hemisphere equals the same integral, but with a backwards parametrization, so they cancel. Hence $a=b=0$.
