Mathematics V1208y Honors Mathematics IV

Final Examination May 9, 2016

If a region has graph type; or if a parametrization is counterclockwise; or if a reparametrization is forward or backward, just say so. You don't have to prove it. Good luck!

PART A: True/False. Decide whether the given statement is true or false, and give a brief reason for your answer (sketch of proof or counterexample). 4 points each.

- 1. If an invertible matrix A is skew-symmetric (i.e. $A_{ji} = -A_{ij}$), then so is its inverse.
- 2. The eigenvalues of a matrix with rational entries are rational.
- **3.** If the nonzero vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ in \mathbb{R}^n are nonzero and all orthogonal, then they are linearly independent.
- 4. Any linear map $L : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable.
- 5. There exists a scalar field $f : \mathbb{R}^3 \to \mathbb{R}$ whose partial derivatives are all continuous, but which is not itself continuous.
- 6. If $U \subseteq \mathbb{R}^2$ is the union of the two rectangles $(1,2) \times (-1,3)$ and $(-1,3) \times (1,2)$, then the vector field $F(x,y) = (x/(x^2+y^2), y/(x^2+y^2))$ is a gradient on U.

PART B: Shorter proofs and computations. 7 points each.

- 7. If A is a Hermitian matrix and all the eigenvalues of A I are imaginary (that is, real multiples of i), prove that A = I.
- 8. Let $f : \mathbb{R}^n \to \mathbb{R}$ be any continuous scalar field. Show that $U = \{ \mathbf{x} \in \mathbb{R}^n \mid f(\mathbf{x}) \neq 0 \}$ is an open set.
- **9.** Use the chain rule to express $\frac{\partial g}{\partial t}$ in terms of partial derivatives of f(x, y, z) if $g(s, t) = f(s^2 t^2, s^2 + t^2, st)$, and $f : \mathbb{R}^3 \to \mathbb{R}$ is a C^1 function.
- 10. Give a careful definition of the integral of a scalar field with respect to arclength.
- 11. Show that if f is a scalar field and G is a vector field on \mathbb{R}^3 , then $\nabla \cdot (f^2 G) = 2f \nabla f \cdot G + f^2 \nabla \cdot G$. Be sure you understand what each term means!
- 12. Using the divergence theorem, compute the surface integral $\int_S F \cdot d\mathbf{r}^2$, where S is the unit upper hemisphere in \mathbb{R}^3 , and F(x, y, z) = (x, y, 0).

PART C: Longer proofs and computations. 10 points each.

- **13.** Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous, and let $k(t) = \int_0^1 \int_0^{t^2} f(x, y) dx dy$. Prove that k is differentiable and express its derivative in terms of a single integral. State clearly what theorems you are using. (Hint: recall we proved that $\int_0^1 f(x, y) dy$ is a continuous function of x.)
- 14. Let R be the rectangle in \mathbb{R}^2 with vertices at (0,2), (2,0), (4,6), and (6,4). Use the transformation formula to express $\iint_R xy \, dx \, dy$ as a double integral with constant limits of integration, and evaluate it.
- 15. Let $\mathbf{a} = (1, 0, 0) \in \mathbb{R}^3$, and let H be the vector field given by $H(\mathbf{x}) = \mathbf{a} \times \mathbf{x}$.
 - (a) Compute the curl of H.
 - (b) If D is the unit disk in the plane, and $r: D \to S$ is the parametric surface with $r(u, v) = (u, v, (1 u^2 v^2) e^{7u^2 v} \cos v)$, compute $\iint_S \mathbf{a} \cdot d\mathbf{r}^2$.
 - (c) (Optional) Interpret in terms of fish.
- 16. Let g and $h : \mathbb{R} \to \mathbb{R}$ be increasing C^1 functions, and let F be the vector field on \mathbb{R}^2 given by F(x,y) = (g(x) h(y), h(x) g(y)). Use Green's theorem to show that, if C_r is the circle of radius r, then the (counterclockwise) line integral $\oint_{C_r} F \cdot d\gamma$ is an increasing function of r.
- 17. Let F be a C^1 vector field on \mathbb{R}^3 . Let S_r be the sphere of radius r centered at $\mathbf{0}$, and let \mathbf{n} be the unit outward normal. Suppose there exist constants a, b such that for all r > 1,

$$\iint_{S_r} F \cdot d\mathbf{r}^2 = ar + b.$$

- (a) What conditions must a, b satisfy if div $F(\mathbf{x}) = 0$ whenever $\|\mathbf{x}\| \ge 1$?
- (b) What conditions must a, b satisfy if there exists a vector field G on \mathbb{R}^3 so that curl $G(\mathbf{x}) = F(\mathbf{x})$ whenever $||\mathbf{x}|| \ge 1$?