Mathematics V1208y
 Honors Mathematics IV

Final Examination
May 9, 2016

If a region has graph type; or if a parametrization is counterclockwise; or if a reparametrization is forward or backward, just say so. You don't have to prove it. Good luck!

PART A: True/False. Decide whether the given statement is true or false, and give a brief reason for your answer (sketch of proof or counterexample). 4 points each.

1. If an invertible matrix A is skew-symmetric (i.e. $A_{j i}=-A_{i j}$), then so is its inverse.
2. The eigenvalues of a matrix with rational entries are rational.
3. If the nonzero vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ in \mathbb{R}^{n} are nonzero and all orthogonal, then they are linearly independent.
4. Any linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable.
5. There exists a scalar field $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ whose partial derivatives are all continuous, but which is not itself continuous.
6. If $U \subseteq \mathbb{R}^{2}$ is the union of the two rectangles $(1,2) \times(-1,3)$ and $(-1,3) \times(1,2)$, then the vector field $F(x, y)=\left(x /\left(x^{2}+y^{2}\right), y /\left(x^{2}+y^{2}\right)\right)$ is a gradient on U.

PART B: Shorter proofs and computations. 7 points each.
7. If A is a Hermitian matrix and all the eigenvalues of $A-I$ are imaginary (that is, real multiples of i), prove that $A=I$.
8. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be any continuous scalar field. Show that $U=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid f(\mathbf{x}) \neq 0\right\}$ is an open set.
9. Use the chain rule to express $\frac{\partial g}{\partial t}$ in terms of partial derivatives of $f(x, y, z)$ if $g(s, t)=$ $f\left(s^{2}-t^{2}, s^{2}+t^{2}, s t\right)$, and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a C^{1} function.
10. Give a careful definition of the integral of a scalar field with respect to arclength.
11. Show that if f is a scalar field and G is a vector field on \mathbb{R}^{3}, then $\nabla \cdot\left(f^{2} G\right)=$ $2 f \nabla f \cdot G+f^{2} \nabla \cdot G$. Be sure you understand what each term means!
12. Using the divergence theorem, compute the surface integral $\int_{S} F \cdot d \mathbf{r}^{2}$, where S is the unit upper hemisphere in \mathbb{R}^{3}, and $F(x, y, z)=(x, y, 0)$.

PART C: Longer proofs and computations. 10 points each.
13. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous, and let $k(t)=\int_{0}^{1} \int_{0}^{t^{2}} f(x, y) d x d y$. Prove that k is differentiable and express its derivative in terms of a single integral. State clearly what theorems you are using. (Hint: recall we proved that $\int_{0}^{1} f(x, y) d y$ is a continuous function of x.)
14. Let R be the rectangle in \mathbb{R}^{2} with vertices at $(0,2),(2,0),(4,6)$, and $(6,4)$. Use the transformation formula to express $\iint_{R} x y d x d y$ as a double integral with constant limits of integration, and evaluate it.
15. Let $\mathbf{a}=(1,0,0) \in \mathbb{R}^{3}$, and let H be the vector field given by $H(\mathbf{x})=\mathbf{a} \times \mathbf{x}$.
(a) Compute the curl of H.
(b) If D is the unit disk in the plane, and $r: D \rightarrow S$ is the parametric surface with $r(u, v)=\left(u, v,\left(1-u^{2}-v^{2}\right) e^{7 u^{2} v} \cos v\right)$, compute $\iint_{S} \mathbf{a} \cdot d \mathbf{r}^{2}$.
(c) (Optional) Interpret in terms of fish.
16. Let g and $h: \mathbb{R} \rightarrow \mathbb{R}$ be increasing C^{1} functions, and let F be the vector field on \mathbb{R}^{2} given by $F(x, y)=(g(x)-h(y), h(x)-g(y))$. Use Green's theorem to show that, if C_{r} is the circle of radius r, then the (counterclockwise) line integral $\oint_{C_{r}} F \cdot d \gamma$ is an increasing function of r.
17. Let F be a C^{1} vector field on \mathbb{R}^{3}. Let S_{r} be the sphere of radius r centered at $\mathbf{0}$, and let \mathbf{n} be the unit outward normal. Suppose there exist constants a, b such that for all $r>1$,

$$
\iint_{S_{r}} F \cdot d \mathbf{r}^{2}=a r+b
$$

(a) What conditions must a, b satisfy if div $F(\mathbf{x})=0$ whenever $\|\mathbf{x}\| \geq 1$?
(b) What conditions must a, b satisfy if there exists a vector field G on \mathbb{R}^{3} so that $\operatorname{curl} G(\mathbf{x})=F(\mathbf{x})$ whenever $\|\mathbf{x}\| \geq 1$?

