Mathematics V1208y Honors Mathematics B Answers to Midterm Exam March 9, 2016

- 1. A matrix is in *reduced row-echelon form* if: (i) in each row, the first nonzero entry (if any) is 1, called a *leading 1*; (ii) each leading 1 is to the right of those above it; (iii) each leading 1 is the only nonzero entry in its column.
- 2. (a) The characteristic polynomial is $(\lambda + 4)(\lambda 5) + 18 = \lambda^2 + \lambda 2 = (\lambda 2)(\lambda + 1)$, so eigenvalues are 2 and -1. The null spaces of A 2I and A + I have bases (1, 1) and (2, 1) respectively (one can do this by Gauss-Jordan elimination on the respective matrices, or just write them down and eyeball it), so the change of basis from the basis of eigenvectors to the standard basis is $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$. We can invert this using $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ to express A as $\begin{pmatrix} -4 & 6 \\ -3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$.

(b) Multiply out $A^k = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}^k \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2^k & 0 \\ 0 & (-1)^k \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$ to obtain the upper right-hand entry $2^{k+1} + 2(-1)^{k+1}$.

- **3.** (a) Expand by minors along the last row to get det $B = (-1)^{1+6} 9 \det B^{61} = -9 \det I_5 = -9$. (b) Since $\det(B^7) = (\det B)^7 = (-9)^7 \neq 0$ and B^7 is a 6×6 matrix, we must have rank $B^7 = 6$.
- 4. If n > 2, then there are at least three rows, so we may subtract row 2 from row 3, then row 1 from row 2 (both elementary row operations of type III, which do not change the determinant) to obtain a matrix with two rows whose entries are all 1. This has determinant zero by axiom D3 of determinants.

On the other hand, if $n \leq 2$, then det() = 1, det(2) = 2, and det $\begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix} = -1$.

5. (a) If $v \in \text{im } T$, then there exists $w \in \mathbb{R}^n$ such that v = T(w). Then $S(v) = S(T(w)) = S \circ T(w) = 0$, so $v \in \ker S$.

(b) By (a), dim im $T \leq \dim \ker S$, hence rank $T \leq \operatorname{nullity} S$, hence rank $T \leq n - \operatorname{rank} S$ by rank-nullity, hence rank $S + \operatorname{rank} T \leq n$.

6. (a) If v is an eigenvector with eigenvalue λ , then $\lambda v = Dv = D^2v = D\lambda v = \lambda Dv = \lambda^2 v$. Since $v \neq 0$, $\lambda = \lambda^2$. Hence $(\lambda - 1)\lambda = 0$, so $\lambda = 1$ or $\lambda = 0$.

(b) Let V_{λ} denote the λ -eigenspace of D. If $v \in V_1$, then Dv = v, so $v \in \text{im } T_D$. Conversely, if $v \in \text{im } T_D$, then v = Dw for some w, but then Dv = DDw = Dw = v, so $v \in V_1$.

(c) Since $V_0 = \ker T_D$, dim $V_0 =$ nullity T_D . But by (b), dim $V_1 = \operatorname{rank} T_D$. By rank-nullity their dimensions sum to n. If u_1, \ldots, u_k and v_1, \ldots, v_{n-k} are bases for V_0 and V_1 , respectively, then in fact $u_1, \ldots, u_k, v_1, \ldots, v_{n-k}$ must be linearly independent. For if $\sum_i a_i u_i + \sum_j b_j v_j =$ 0, then applying T_D to both sides, we find $\sum_j b_j v_j = 0$, hence each $b_j = 0$ by independence of v_j , hence $\sum_i a_i u_i = 0$, hence each $a_i = 0$ by independence of u_i . As a sequence of length n which is independent, $u_1, \ldots, u_k, v_1, \ldots, v_{n-k}$ must be a basis for \mathbb{R}^n . But it consists of eigenvectors of D, so D is diagonalizable.

7. Proof 1: If *E* has *n* distinct eigenvalues, then the *n* associated eigenvectors are independent and hence form a basis. So *E* is diagonalizable, $E = BDB^{-1}$, where *D* is diagonal with diagonal entries $\lambda_1, \ldots, \lambda_n$. Then det $E = \det B \det D \det B^{-1} = \det B (\lambda_1 \cdots \lambda_n) / \det B = \lambda_1 \cdots \lambda_n$.

Proof 2: If *E* has *n* distinct eigenvalues, then its characteristic polynomial is $\det(\lambda I - E) = \prod_{i=1}^{n} (\lambda - \lambda_i)$. Plug in $\lambda = 0$ to get $(-1)^n \det E = \det(-E) = \prod_{i=1}^{n} (-\lambda_i) = (-1)^n \lambda_1 \cdots \lambda_n$.