Mathematics V1208y

Honors Mathematics B

Answers to Midterm Exam

March 9, 2016

1. A matrix is in reduced row-echelon form if: (i) in each row, the first nonzero entry (if any) is 1, called a leading 1; (ii) each leading 1 is to the right of those above it; (iii) each leading 1 is the only nonzero entry in its column.
2. (a) The characteristic polynomial is $(\lambda+4)(\lambda-5)+18=\lambda^{2}+\lambda-2=(\lambda-2)(\lambda+1)$, so eigenvalues are 2 and -1 . The null spaces of $A-2 I$ and $A+I$ have bases $(1,1)$ and $(2,1)$ respectively (one can do this by Gauss-Jordan elimination on the respective matrices, or just write them down and eyeball it), so the change of basis from the basis of eigenvectors to the standard basis is $\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$. We can invert this using $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ to express A as $\left(\begin{array}{ll}-4 & 6 \\ -3 & 5\end{array}\right)=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)\left(\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{rr}-1 & 2 \\ 1 & -1\end{array}\right)$.
(b) Multiply out $A^{k}=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)\left(\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right)^{k}\left(\begin{array}{rr}-1 & 2 \\ 1 & -1\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\left(\begin{array}{cc}2^{k} & 0 \\ 0 & (-1)^{k}\end{array}\right)\left(\begin{array}{rr}-1 & 2 \\ 1 & -1\end{array}\right)$ to obtain the upper right-hand entry $2^{k+1}+2(-1)^{k+1}$.
3. (a) Expand by minors along the last row to $\operatorname{get} \operatorname{det} B=(-1)^{1+6} 9 \operatorname{det} B^{61}=-9 \operatorname{det} I_{5}=-9$. (b) Since $\operatorname{det}\left(B^{7}\right)=(\operatorname{det} B)^{7}=(-9)^{7} \neq 0$ and B^{7} is a 6×6 matrix, we must have rank $B^{7}=6$.
4. If $n>2$, then there are at least three rows, so we may subtract row 2 from row 3 , then row 1 from row 2 (both elementary row operations of type III, which do not change the determinant) to obtain a matrix with two rows whose entries are all 1 . This has determinant zero by axiom D3 of determinants.
On the other hand, if $n \leq 2$, then $\operatorname{det}()=1, \operatorname{det}(2)=2$, and $\operatorname{det}\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)=-1$.
5. (a) If $v \in$ im T, then there exists $w \in \mathbb{R}^{n}$ such that $v=T(w)$. Then $S(v)=S(T(w))=$ $S \circ T(w)=0$, so $v \in \operatorname{ker} S$.
(b) By (a), $\operatorname{dimim} T \leq \operatorname{dim} \operatorname{ker} S$, hence $\operatorname{rank} T \leq$ nullity S, hence $\operatorname{rank} T \leq n-\operatorname{rank} S$ by rank-nullity, hence rank $S+\operatorname{rank} T \leq n$.
6. (a) If v is an eigenvector with eigenvalue λ, then $\lambda v=D v=D^{2} v=D \lambda v=\lambda D v=\lambda^{2} v$. Since $v \neq 0, \lambda=\lambda^{2}$. Hence $(\lambda-1) \lambda=0$, so $\lambda=1$ or $\lambda=0$.
(b) Let V_{λ} denote the λ-eigenspace of D. If $v \in V_{1}$, then $D v=v$, so $v \in \operatorname{im} T_{D}$. Conversely, if $v \in \operatorname{im} T_{D}$, then $v=D w$ for some w, but then $D v=D D w=D w=v$, so $v \in V_{1}$.
(c) Since $V_{0}=\operatorname{ker} T_{D}$, $\operatorname{dim} V_{0}=$ nullity T_{D}. But by (b), $\operatorname{dim} V_{1}=\operatorname{rank} T_{D}$. By rank-nullity their dimensions sum to n. If u_{1}, \ldots, u_{k} and v_{1}, \ldots, v_{n-k} are bases for V_{0} and V_{1}, respectively, then in fact $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{n-k}$ must be linearly independent. For if $\sum_{i} a_{i} u_{i}+\sum_{j} b_{j} v_{j}=$ 0 , then applying T_{D} to both sides, we find $\sum_{j} b_{j} v_{j}=0$, hence each $b_{j}=0$ by independence of v_{j}, hence $\sum_{i} a_{i} u_{i}=0$, hence each $a_{i}=0$ by independence of u_{i}. As a sequence of length n which is independent, $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{n-k}$ must be a basis for \mathbb{R}^{n}. But it consists of eigenvectors of D, so D is diagonalizable.
7. Proof 1: If E has n distinct eigenvalues, then the n associated eigenvectors are independent and hence form a basis. So E is diagonalizable, $E=B D B^{-1}$, where D is diagonal with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$. Then $\operatorname{det} E=\operatorname{det} B \operatorname{det} D \operatorname{det} B^{-1}=\operatorname{det} B\left(\lambda_{1} \cdots \lambda_{n}\right) / \operatorname{det} B=$ $\lambda_{1} \cdots \lambda_{n}$.
Proof 2: If E has n distinct eigenvalues, then its characteristic polynomial is $\operatorname{det}(\lambda I-E)=$ $\prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right)$. Plug in $\lambda=0$ to get $(-1)^{n} \operatorname{det} E=\operatorname{det}(-E)=\prod_{i=1}^{n}\left(-\lambda_{i}\right)=(-1)^{n} \lambda_{1} \cdots \lambda_{n}$.
