Mathematics V1208y Honors Mathematics B

Assignment \#9

Due April 8, 2016
Reading: Apostol, chapter 10.
Remark on notation: In the plane, Apostol often writes $\int_{C} f d x+g d y$ for the line integral that was expressed in lecture as $\int_{C}(f, g) \cdot d \gamma$. It makes sense, as $\frac{d \gamma}{d t}=\left(\frac{d x}{d t}, \frac{d y}{d t}\right)$, so at least formally, $d \gamma=(d x, d y)$.

1. Apostol $\S 8.17$ (pp. 268-9) *12.

Hint: compose with a suitable curve and use the chain rule.
2. Apostol $\S 8.22(\mathrm{pp} 275-7$.$) *3ab (and evaluate explicitly for X(s, t)=s+t, Y(s, t)=s t$, and $\left.f(x, y)=e^{x-y}\right), 8,9, *_{14}, 15$.
3. Apostol $\S 8.24$ (pp. 281-2) *4.
4. Apostol $\S 10.5$ (p. 328) 2, 7, 8, *10.
*5. Let $U=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \neq(0,0)\right\}$ and let $F: U \rightarrow \mathbb{R}^{2}$ be given by

$$
F(x, y)=\left(\frac{x+y}{x^{2}+y^{2}}, \frac{y-x}{x^{2}+y^{2}}\right)
$$

Use the previous problem to show that this is not conservative.
6. Apostol $\S 10.9$ (pp. 331-2) 1, 8, *10.
7. Apostol $\S 10.13$ (pp. 336-7) 4, *5a, 6, 7.
8. Apostol §10.18 (pp. 345-6) *14.
*9. A radial force field in \mathbb{R}^{n} may be expressed as $F(\mathbf{r})=f(\|\mathbf{r}\|) \mathbf{r} /\|\mathbf{r}\|$. Assuming that f is a smooth function of one variable, show that F is conservative.

