Mathematics V1208y Honors Mathematics B

Assignment #9

Due April 8, 2016

Reading: Apostol, chapter 10.

Remark on notation: In the plane, Apostol often writes $\int_C f \, dx + g \, dy$ for the line integral that was expressed in lecture as $\int_C (f,g) \cdot d\gamma$. It makes sense, as $\frac{d\gamma}{dt} = \left(\frac{dx}{dt}, \frac{dy}{dt}\right)$, so at least formally, $d\gamma = (dx, dy)$.

1. Apostol §8.17 (pp. 268–9) *12.

Hint: compose with a suitable curve and use the chain rule.

- **2.** Apostol §8.22 (pp. 275–7) *3ab (and evaluate explicitly for X(s,t) = s+t, Y(s,t) = st, and $f(x,y) = e^{x-y}$), 8, 9, *14, 15.
- **3.** Apostol §8.24 (pp. 281–2) *****4.
- 4. Apostol §10.5 (p. 328) 2, 7, 8, *10.
- *5. Let $U = \{(x, y) \in \mathbb{R}^2 | (x, y) \neq (0, 0)\}$ and let $F : U \to \mathbb{R}^2$ be given by

$$F(x,y) = \left(\frac{x+y}{x^2+y^2}, \frac{y-x}{x^2+y^2}\right).$$

Use the previous problem to show that this is not conservative.

- **6.** Apostol §10.9 (pp. 331–2) 1, 8, *10.
- 7. Apostol §10.13 (pp. 336–7) 4, *5a, 6, 7.
- 8. Apostol §10.18 (pp. 345–6) *14.
- *9. A radial force field in \mathbb{R}^n may be expressed as $F(\mathbf{r}) = f(||\mathbf{r}||)\mathbf{r}/||\mathbf{r}||$. Assuming that f is a smooth function of one variable, show that F is conservative.