Mathematics V1208y Honors Mathematics B

Assignment #8

Due April 1, 2016

- 1. Apostol §8.3 (pp. 245–7) 2. You needn't do it all, just enough to get the idea.
- **2.** Apostol §8.5 (pp. 251–2) *****6, 7, 8.
- **3.** Apostol §8.9 (pp. 255–6) 4, 7, 8, 9, 10, 12, *20, 21, *22.
- **4.** Apostol §8.14 (pp. 262–3) 1, 2, 7, 10, 11.
- **5.** Apostol §8.24 (pp. 281–2) *****1, 2, 3, *****12a, *****13.

Hint for 13: you may use the fact, asserted in class and in Figure 8.8, that for any scalar field $f : \mathbb{R}^3 \to \mathbb{R}$, its gradient vectors $\nabla f(x, y, z)$ are perpendicular to the tangent planes of its level surfaces f(x, y, z) = c. We will speak more rigorously about surfaces and tangent planes in the future.

- **6.** Show that if U and V are open in \mathbb{R}^n , then so are $U \cup V$ and $U \cap V$.
- *7. Show that the product $(a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$ is an open set in \mathbb{R}^n .
- *8. Suppose that $F : \mathbb{R}^n \to \mathbb{R}$ is linear. Show that for any $\mathbf{x} \in \mathbb{R}^n$, the total derivative of F at \mathbf{x} is just F itself.
- *9. A function $G : \mathbb{R}^n \to \mathbb{R}$ is called *homogeneous*^{*} if $G(t\mathbf{x}) = t G(\mathbf{x})$ for all nonzero $t \in \mathbb{R}$ and all nonzero $\mathbf{x} \in \mathbb{R}^n$. Suppose that G is homogeneous and continuous.
 - (a) Show that $G(\mathbf{0}) = 0$.
 - (b) Show that the directional derivative of G at **0** along **y** exists for all $\mathbf{y} \in \mathbb{R}^n$.
 - (c) Show that G is differentiable at **0** if and only if it is linear. Hint: If it's differentiable, look at a single line through the origin at a time, and show that there it equals its own derivative.
- *10. Suppose $H : \mathbb{R}^n \to \mathbb{R}$ satisfies $|H(\mathbf{x})| \leq c ||\mathbf{x}||^2$ for some constant $c \in \mathbb{R}$ and for all $\mathbf{x} \in \mathbb{R}^n$. Show that it is differentiable at **0** and compute its derivative.

^{*}Strictly speaking, this is really called *homogeneous of degree 1*, but never mind.