Mathematics V1208y Honors Mathematics B

Assignment \#8

Due April 1, 2016

1. Apostol $\S 8.3$ (pp. 245-7) 2. You needn't do it all, just enough to get the idea.
2. Apostol $\S 8.5$ (pp. 251-2) *6, 7,8 .
3. Apostol $\S 8.9$ (pp. 255-6) $4,7,8,9,10,12, * 20,21, * 22$.
4. Apostol $\S 8.14$ (pp. 262-3) 1, 2, 7, 10, 11.
5. Apostol $\S 8.24\left(\right.$ pp. 281-2) * $1,2,3,{ }^{*} 12$ a, ${ }^{*} 13$.

Hint for 13: you may use the fact, asserted in class and in Figure 8.8, that for any scalar field $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, its gradient vectors $\nabla f(x, y, z)$ are perpendicular to the tangent planes of its level surfaces $f(x, y, z)=c$. We will speak more rigorously about surfaces and tangent planes in the future.
6. Show that if U and V are open in \mathbb{R}^{n}, then so are $U \cup V$ and $U \cap V$.
*7. Show that the product $\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right) \times \cdots \times\left(a_{n}, b_{n}\right)$ is an open set in \mathbb{R}^{n}.
*8. Suppose that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is linear. Show that for any $\mathbf{x} \in \mathbb{R}^{n}$, the total derivative of F at \mathbf{x} is just F itself.
9. A function $G: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called homogeneous ${ }^{}$ if $G(t \mathbf{x})=t G(\mathbf{x})$ for all nonzero $t \in \mathbb{R}$ and all nonzero $\mathbf{x} \in \mathbb{R}^{n}$. Suppose that G is homogeneous and continuous.
(a) Show that $G(\mathbf{0})=0$.
(b) Show that the directional derivative of G at $\mathbf{0}$ along \mathbf{y} exists for all $\mathbf{y} \in \mathbb{R}^{n}$.
(c) Show that G is differentiable at $\mathbf{0}$ if and only if it is linear. Hint: If it's differentiable, look at a single line through the origin at a time, and show that there it equals its own derivative.
*10. Suppose $H: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies $|H(\mathbf{x})| \leq c\|\mathbf{x}\|^{2}$ for some constant $c \in \mathbb{R}$ and for all $\mathbf{x} \in \mathbb{R}^{n}$. Show that it is differentiable at $\mathbf{0}$ and compute its derivative.

[^0]
[^0]: *Strictly speaking, this is really called homogeneous of degree 1, but never mind.

