Mathematics V1208y Honors Mathematics B

Assignment #7

Due March 25, 2016

Reading: Apostol §8 (pp. 243–281).

- 1. Apostol §1.17 (p. 30) 2, 3, 4.
- *2. Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by (1, 1, 1, 1), (-1, 4, 4, -1), and (4, -2, 2, 0).
 - **3.** Apostol §5.5 (pp. 118–120) 3, 4, 5, 6.
 - 4. Apostol §5.11 (pp. 124–126) 1, 2, 6, 8, *13, 14. Hint for 13: If $v, w \in \mathbb{R}^n$ are regarded as $n \times 1$ matrices, then $v \cdot w = v^t w$.
- *5. Let V be a finite-dimensional Euclidean or Hermitian space, $U \subset V$ any subspace. Show that dim $U + \dim U^{\perp} = \dim V$.
- *6. (20 pts) Let U, V, W be finite-dimensional Euclidean or Hermitian spaces, $S: U \to V$ and $T: V \to W$ linear maps. Show that:
 - (a) $T^{**} = T$. (Choosing ONBs is perfectly legitimate, but working directly from the definition is in better taste.)
 - (b) $\ker T^* = (\operatorname{im} T)^{\perp}$.
 - (c) $\ker T = (\operatorname{im} T^*)^{\perp}$.
 - (d) rank $T^* = \operatorname{rank} T$.
 - (e) Use the above to give an alternate proof that the row-rank of a real square matrix equals its column-rank.
 - (f) $(TS)^* = S^*T^*$.
 - (g) If T is invertible, then so is T^* , and $(T^*)^{-1} = (T^{-1})^*$.

CONTINUED OVERLEAF...

*7. (20 pts) Prove the finite-dimensional spectral theorem:

Let V be a finite-dimensional Hermitian space and $T: V \to V$ a linear map. Then V has an orthonormal basis of T-eigenvectors if and only if T is normal (i.e. $TT^* = T^*T$).

- Step 1. Prove the "only if" part by considering a diagonal matrix representation of T.
- Step 2. Show that any linear map $T: V \to V$ can be written T = H + iK, where H and K are Hermitian.
- Step 3. If T is normal, show that H and K commute in the above description.
- Step 4. Let λ be an eigenvalue of H, and E_{λ} the corresponding eigenspace. Show that K maps E_{λ} into itself, and so by the Hermitian case of the spectral theorem, E_{λ} has an orthonormal basis of K-eigenvectors.
- Step 5. Show that two commuting self-adjoint linear maps can be "simultaneously diagonalized," i.e. there exists an orthonormal basis of V consisting of eigenvectors for both H and K.

Step 6. Show V has an orthonormal basis of T-eigenvectors.

*8. A linear map $T: V \to V$ on a finite-dimensional Hermitian space is called *non-negative* if it is self-adjoint and all its eigenvalues are positive or zero. Show, using the spectral theorem, that a non-negative linear map has an *unique* non-negative square root.