Mathematics V1208y Honors Mathematics B

Assignment \#7

Due March 25, 2016
Reading: Apostol §8 (pp. 243-281).

1. Apostol $\S 1.17$ (p. 30) 2, 3, 4.
*2. Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by $(1,1,1,1),(-1,4,4,-1)$, and $(4,-2,2,0)$.
2. Apostol $\S 5.5$ (pp. 118-120) 3, 4, 5, 6.
3. Apostol $\S 5.11$ (pp. 124-126) 1, 2, 6, 8, *13, 14.

Hint for 13: If $v, w \in \mathbb{R}^{n}$ are regarded as $n \times 1$ matrices, then $v \cdot w=v^{t} w$.
*5. Let V be a finite-dimensional Euclidean or Hermitian space, $U \subset V$ any subspace. Show that $\operatorname{dim} U+\operatorname{dim} U^{\perp}=\operatorname{dim} V$.
*6. (20 pts) Let U, V, W be finite-dimensional Euclidean or Hermitian spaces, $S: U \rightarrow V$ and $T: V \rightarrow W$ linear maps. Show that:
(a) $T^{* *}=T$. (Choosing ONBs is perfectly legitimate, but working directly from the definition is in better taste.)
(b) $\operatorname{ker} T^{*}=(\operatorname{im} T)^{\perp}$.
(c) $\operatorname{ker} T=\left(\operatorname{im} T^{*}\right)^{\perp}$.
(d) $\operatorname{rank} T^{*}=\operatorname{rank} T$.
(e) Use the above to give an alternate proof that the row-rank of a real square matrix equals its column-rank.
(f) $(T S)^{*}=S^{*} T^{*}$.
(g) If T is invertible, then so is T^{*}, and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.
*7. (20 pts) Prove the finite-dimensional spectral theorem:
Let V be a finite-dimensional Hermitian space and $T: V \rightarrow V$ a linear map. Then V has an orthonormal basis of T-eigenvectors if and only if T is normal (i.e. $T T^{*}=T^{*} T$).

Step 1. Prove the "only if" part by considering a diagonal matrix representation of T.
Step 2. Show that any linear map $T: V \rightarrow V$ can be written $T=H+i K$, where H and K are Hermitian.

Step 3. If T is normal, show that H and K commute in the above description.
Step 4. Let λ be an eigenvalue of H, and E_{λ} the corresponding eigenspace. Show that K maps E_{λ} into itself, and so by the Hermitian case of the spectral theorem, E_{λ} has an orthonormal basis of K-eigenvectors.
Step 5. Show that two commuting self-adjoint linear maps can be "simultaneously diagonalized," i.e. there exists an orthonormal basis of V consisting of eigenvectors for both H and K.

Step 6. Show V has an orthonormal basis of T-eigenvectors.
*8. A linear map $T: V \rightarrow V$ on a finite-dimensional Hermitian space is called non-negative if it is self-adjoint and all its eigenvalues are positive or zero. Show, using the spectral theorem, that a non-negative linear map has an unique non-negative square root.

