Mathematics V1208y
 Honors Mathematics B
 Assignment \#6

Due March 5, 2016
Reading: Apostol §1.11-1.15 (pp. 14-28).

1. Apostol $\S 1.13$ (pp. 20-2) 3, 4, 5, 6, 9, 10, *13abd, *16ac. In 13 b , you needn't prove that V is a linear space (which we already know), just that (x, y) is an inner product.
*2. (a) If $A, B \in M_{n, n}$ commute (that is, $A B=B A$), and if $V_{\lambda} \subset \mathbb{R}^{n}$ is the λ-eigenspace of A, show that $T_{B}\left(V_{\lambda}\right) \subset V_{\lambda}$.
(b) If a real matrix $A \in M_{n, n}$ has n distinct real eigenvalues, describe all the real matrices $B \in M_{n, n}$ that commute with A and show that they are all diagonalizable.
2. Give an explicit formula, in terms of k, for the upper right-hand entry of A^{k}, where $A=\left(\begin{array}{rr}15 & -8 \\ 24 & -13\end{array}\right)$.
*4. Let A be the matrix of rotation through an angle θ, namely $A=\left(\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$. Notice that, if you believe this is indeed rotation through θ, then applying it n times rotates through $n \theta$, so $A^{n}=\left(\begin{array}{rc}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right)$.
(a) Prove that the eigenvalues of A are $\cos \theta \pm i \sin \theta$. Diagonalize A.
(b) Find formulas for $\cos 3 \theta$ and $\sin 3 \theta$ in terms of $\sin \theta$ and $\cos \theta$. Extra credit: do the same for $\cos n \theta$ and $\sin n \theta$. (Use the binomial theorem, or induction.)
*5. (30 pts) If A is an $n \times n$ matrix with complex entries, a square root of A is, not surprisingly, an $n \times n$ matrix B such that $B^{2}=A$.
(a) If a is any nonzero complex number, prove that it has exactly 2 complex square roots. (You may use the fundamental theorem of algebra.)
(b) If A is a diagonal matrix with nonzero entries on the diagonal, show that A has (at least) 2^{n} distinct square roots.
(c) If A is a diagonalizable matrix with nonzero eigenvalues, show that A has (at least) 2^{n} distinct square roots.
(d) Generalize Apostol $\S 4.4 \# 4$ (from the last assignment) to show that if B^{2} has eigenvalue λ^{2} for any complex λ, then B has eigenvalue either λ or $-\lambda$. Must the associated eigenvectors also be eigenvectors of B^{2} ?
(e) If A is as in (c) and has n distinct eigenvalues, show that the 2^{n} square roots you constructed are the only square roots of A. Hint: use (d)!
(f) Find the square roots of the matrix $A=\left(\begin{array}{ll}-11 & 15 \\ -20 & 24\end{array}\right)$.
(g) Show that the matrix $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ has only 2 square roots. Hence the hypothesis that the eigenvalues be nonzero is necessary in (c).
(h) Show that the 2×2 identity matrix has at least 5 square roots. Hence the hypothesis that the eigenvalues be distinct is necessary in (e).
(i) Show that the 2×2 zero matrix has an infinite number of square roots.
