Mathematics V1208y
 Honors Mathematics B

Assignment \#5

Due February 26, 2016

Reading: Apostol §§5.1-5.10 (pp. 114-124) and §5.19 (pp. 138-141).
*1. For each of the matrices below, either diagonalize it (i.e. express it as $B D B^{-1}$ with D diagonal) or prove that this is impossible. Hint: it helps to choose cleverly when expanding by minors.

$$
\text { (a) }\left(\begin{array}{rr}
20 & -9 \\
30 & -13
\end{array}\right) ;(\mathrm{b})\left(\begin{array}{rr}
8 & 4 \\
-9 & -4
\end{array}\right) ;(\mathrm{c})\left(\begin{array}{rrr}
-1 & 4 & 4 \\
0 & -5 & -4 \\
0 & 8 & 7
\end{array}\right) \text {. }
$$

2. Apostol $\S 4.4$ (p. 101) $1,2,3, * 4,6,10,11,12$.
3. Apostol $\S 4.8$ (pp. 107-8) 1, 2, 7, *11.
4. Apostol $\S 4.10$ (pp. 112-13) 2, 4, 6, *7, *8abc, 8d.
*5. Let V be an n-dimensional vector space and let $T: V \rightarrow V$ be a linear map. Define the characteristic polynomial $\chi_{T}: \mathbb{R} \rightarrow \mathbb{R}$ by $\chi_{T}(\lambda)=\operatorname{det}(\lambda I-A)$, where A is the matrix representing T in any basis.
(a) Prove that χ_{T} does not depend on the choice of basis.
(b) Prove that χ_{T} is a polynomial function of λ of degree n with leading term λ^{n}.
*6. If A is an upper-triangular square matrix, show that the eigenvalues of A are exactly its diagonal entries $a_{i i}$. ("Exactly" means a number is an eigenvalue if and only if it's one of the diagonal entries.)
5. Let P_{k} be the space of polynomials of degree $\leq k$ as usual, and consider the maps $T: P_{k} \rightarrow P_{k}$ given by $T(p)=q$, where
(a) $q(x)=p^{\prime}(x)$;
(b) $q(x)=x p^{\prime}(x)$;
(c) $q(x)=p^{\prime \prime}(x)+p^{\prime}(x)+p(x)$;
(d) $q(x)=p(x+1)$.

In each case, find the eigenvalues, eigenfunctions (that is, functions that are eigenvectors) and determinant of T. In which cases is it diagonalizable?

