Mathematics V1208y
 Honors Mathematics B

Assignment \#4

Due February 19, 2016

From now on, all assignments are from Volume II of Apostol.
Reading: Apostol §4.

1. Apostol $\S 3.6$ (pp. 79-81) 1, 2, 3 .
2. Apostol $\S 3.11$ (pp. 85-86) 1, 2, 3, 4, 7.
*3. Show that if A is any $n \times n$ matrix, then $\operatorname{det}(c A)=c^{n} \operatorname{det} A$.
*4. For a square matrix A with transpose A^{t}, prove that $\operatorname{det} A=\operatorname{det} A^{t}$ by showing that the right-hand side satisfies the axioms of the determinant. (Don't follow the proof given in Apostol.)
*5. A square matrix A is said to be upper-triangular if $A_{i j}=0$ whenever $i>j$. Prove that if A is upper-triangular and invertible, then its inverse is upper-triangular. Give a 2×2 example.
*6. Use expansion by minors to prove that the determinant of an upper-triangular matrix is the product of its diagonal entries. (Don't follow the proof given in Apostol.)
*7. (a) For any square matrix A, show that $A+A^{t}$ is symmetric and $A-A^{t}$ is skewsymmetric.
(b) Use (a) to show that any square matrix can be expressed uniquely as a sum of one symmetric and one skew-symmetric matrix.
(c) Use a previous problem to show that if n is odd, then any $n \times n$ skew-symmetric matrix has determinant 0 .
(d) Show that any nonzero 3×3 skew-symmetric matrix has rank exactly 2 .

Hint: note that diagonal entries must vanish, and rule out all other possibilities.
*8. Given fixed column vectors $Y_{1}, Y_{2}, \ldots, Y_{n-1} \in \mathbb{R}^{n}$, define a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(X)=\operatorname{det}\left(Y_{1}, Y_{2}, \ldots, Y_{n-1}, X\right)
$$

that is, the determinant of the square matrix with columns Y_{1} through Y_{n-1} and X. Describe the kernel of f in terms of the vectors Y_{1}, \ldots, Y_{n-1}, and prove that your description is correct.
*9. For $x_{1}, \ldots, x_{n} \in \mathbb{R}$ the Vandermonde determinant is defined to be

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\
\vdots & & & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1}
\end{array}\right)
$$

Prove that it equals $\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)$, the product of all differences $x_{j}-x_{i}$ with $i<j$. [Cf. problem 3a on p. 80 of Apostol.] Hint: subtract x_{1} times the k th row from the $k+1$ st for $k=n-1, n-2, n-3, \ldots, 1$. Then expand by minors and use induction.

