Mathematics V1208y Honors Mathematics B

Assignment \#3

Due February 12, 2016

Buy Apostol Vol. II if you haven't already and read $\S 3$.

1. Apostol Vol. I §16.16 (pp. 603-4) = Vol. II §2.16 (pp. 57-58) 6, 7, 8, 11.
2. Apostol Vol. I §16.20 (pp. 613-14) = Vol. II $\S 2.20(\mathrm{pp} .67-68) 7,8,9,{ }^{2} 11,{ }^{2} 12,15$.

For 12, use the method outlined in lecture and in Apostol. If you happen to know Cramer's rule, don't use it.
3. Apostol Vol. I §16.21 (pp. 614-15) = Vol. II §2.21 (pp. 68-70) *1, *2abcf, 2de, 5, 7ac, *7bde.
Singular here means noninvertible, so nonsingular means invertible. For 1 and 2, use the facts proved in lecture and in $\S 2$ of Apostol; don’t use determinants.
Hint for 7: if A has transpose A^{t}, then $A_{i j}^{t}=A_{j i}$.
*4. For matrices $A \in M_{m \times n}, B \in M_{m \times n}, C \in M_{n \times p}$, prove that $(A+B) C=A C+B C$.
*5. Use Gauss-Jordan elimination and back substitution to find the general solution (i.e. the set of all real solutions) to the following linear systems. Show your work.
(a) $\left\{\begin{array}{l}2 x_{1}+4 x_{2}+8 x_{3}+6 x_{4}=0 \\ 5 x_{1}+6 x_{2}+8 x_{3}+7 x_{4}=0 \\ 6 x_{1}+7 x_{2}+9 x_{3}+8 x_{4}=0 \\ 5 x_{1}+4 x_{2}+2 x_{3}+3 x_{4}=0\end{array}\right.$
(b) $\left\{\begin{aligned} 2 x_{1}+4 x_{2}+8 x_{3}+6 x_{4} & =2 \\ 5 x_{1}+6 x_{2}+8 x_{3}+7 x_{4} & =9 \\ 6 x_{1}+7 x_{2}+9 x_{3}+8 x_{4} & =11 \\ 5 x_{1}+4 x_{2}+2 x_{3}+3 x_{4} & =11\end{aligned}\right.$
(c) $\left\{\begin{array}{l}2 x_{1}+4 x_{2}+8 x_{3}+6 x_{4}=2 \\ 5 x_{1}+6 x_{2}+8 x_{3}+7 x_{4}=9 \\ 6 x_{1}+7 x_{2}+9 x_{3}+8 x_{4}=6 \\ 5 x_{1}+4 x_{2}+2 x_{3}+3 x_{4}=11\end{array}\right.$
*6. A square matrix is said to be symmetric if it equals its transpose, $A=A^{t}$, and skewsymmetric if $A=-A^{t}$. For example, the identity matrix is symmetric, since $\delta_{i j}=\delta_{j i}$.
(a) Prove that if A is symmetric and invertible, then its inverse is symmetric.

Give a 2×2 example.
(b) Prove that if A is skew-symmetric and invertible, then its inverse is skew-symmetric. Give a 2×2 example.
7. A square matrix A is said to be upper-triangular if $A_{i j}=0$ whenever $i>j$. Prove that if A is upper-triangular and invertible, then its inverse is upper-triangular. Give a 2×2 example.
*8. If A and B are $n \times n$ matrices, prove that rank $A B \leq \min (\operatorname{rank} A, \operatorname{rank} B)$.

