Mathematics V1208y Honors Mathematics B

Assignment #2 Due February 5, 2016

Buy Volume II of Apostol (second edition).

Read Apostol Vol. I, $\S16.13-16.19$ (pp. 597–613) or, equivalently, Apostol Vol. II, $\S2.13-2.19$ (pp. 51–67).

In Apostol, do the following problems. Most are unstarred and for quick perusal. Notes on terminology: what Apostol calls *null space* is what we call *kernel*; what he (confusingly) calls *range* is what we call *image*; what he calls V_n is what we call \mathbb{R}^n .

Vol. I $\S16.4$ (pp. 582–3) = Vol. II $\S2.8$ (pp. 42–44) 4, 5, 6, 7, 8, 9, 10, 17, 18, 24, 28.

Vol. I $\S16.8$ (pp. 589–90) = Vol. II $\S2.8$ (pp. 42–44) 4, 6, 10, 22, 23, 24, 25, 27.

Vol. I §16.12 (pp. 596–7) = Vol. II §2.12 (pp. 50–51) 1, *2, *5, 6, 11, 12, 13.

Vol. I $\S16.16$ (pp. 603–4) = Vol. II $\S2.16$ (pp. 57–58) 1, 2, 10, 14.

Also do the following. Starred problems are worth 10 points each. General hints: It will frequently be useful (a) to choose a basis for a subspace and extend to a basis for the whole space; (b) to define a linear map by using the construction principle.

- *1. Prove the space $\mathcal{F}(\mathbb{N},\mathbb{R})$ of sequences is infinite-dimensional.
 - 2. Show that if two finite-dimensional vector spaces are isomorphic, then they have the same dimension.
- *3. If W is a finite-dimensional vector space and $V \subset W$ is a subspace, prove that: (a) V is finite-dimensional; (b) dim $V \leq \dim W$; (c) if dim $V = \dim W$, then V = W.
- *4. (a) In R³, a *line* through the origin is the linear subspace L = {tc | t ∈ R} for some constant c ≠ 0 ∈ R³. Find a basis for L. Show that a line is 1-dimensional (!).
 (b) In R³, a *plane* through the origin is the linear subspace P = {x ∈ R³ | x ⋅ c = 0} for some constant c ≠ 0 ∈ R³. Find a basis for P in terms of the components c₁, c₂, c₃ of c. Show that a plane is 2-dimensional (!). Note: watch out, any c_i could be 0.
 (c) Prove that no line through the origin contains a plane through the origin.
 - **5.** Let V be a subspace of a finite-dimensional vector space W. Following the lecture, choose a basis X_1, \ldots, X_k for V and extend to a basis X_1, \ldots, X_n for W. Given $X = \sum_{i=1}^n a_i X_i \in W$, show that $X \in V \Leftrightarrow a_{k+1} = a_{k+2} = \cdots = a_n = 0$.

CONTINUED OVERLEAF...

- **6.** Let U_n be the vector space of polynomial functions $\mathbb{R} \to \mathbb{R}$ of degree $\leq n$.
 - (a) Show that the map $G : U_n \to \mathbb{R}^k$ given by $G(f) = (f(1), f(2), \dots, f(k))$ is linear, and is surjective when $k \leq n+1$. Hint: consider the polynomials $f_i(x) = (x-1)(x-2)(x-3)\cdots(x-i+1)(x-i-1)\cdots(x-k)$.
 - (b) Use rank-nullity to determine the dimension of the subspace of U_n consisting of polynomials satisfying $f(1) = f(2) = \cdots = f(k) = 0$.
- *7. Let U, V be finite-dimensional subspaces of a vector space X, and let

 $W = \{au + bv \mid u \in U, v \in V, a, b \in \mathbb{R}\}.$

(a) Show that W is a subspace of X.

(b) Show there exist bases u_1, \ldots, u_m and v_1, \ldots, v_n for U and V, respectively, which both begin with the same basis for $U \cap V$, namely $u_1 = v_1, \ldots, u_k = v_k$.

- (c) Show that $u_1, \ldots, u_m, v_{k+1}, \ldots, v_n$ is then a basis for W.
- (d) Prove that $\dim W = \dim U + \dim V \dim U \cap V$.
- (e) Illustrate with an example in $X = \mathbb{R}^3$.
- ***8.** Let V be a vector space of dimension n.
 - (a) If $\mathbf{v} \neq \mathbf{0} \in V$, show there exists a linear $T: V \to \mathbb{R}$ such that $T(\mathbf{v}) = 1$.
 - (b) If $W \subset V$ is a hyperplane, that is, a subspace of dimension n-1, show there exists a linear $T: V \to \mathbb{R}$ such that $W = \ker T$.

(c) More generally, if $W \subset V$ is any subspace, show that for some k there exists a linear $T: V \to \mathbb{R}^k$ such that $W = \ker T$.

9. Let V be a finite-dimensional vector space, and let $S \subset V$ be an *affine hyperplane*, that is,

$$S = \{u + x_0 \mid u \in U\}$$

where $U \subseteq V$ is a hyperplane and x_0 is some fixed vector in V but not in U. Show that there is an *unique* linear $T: V \to \mathbb{R}$ such that $T(v) = 1 \Leftrightarrow v \in S$.

- 10. Let V and W be finite-dimensional vector spaces. Show that a linear map $T: V \to W$ has a right inverse if and only if it is surjective, and a left inverse if and only if it is injective.
- *11. Let U and V be vector spaces of dimensions m and n, respectively.
 - (a) If there exists a linear surjection $T: U \to V$, prove that $m \ge n$.
 - (b) If there exists a linear injection $T: U \to V$, prove that $m \leq n$.
- *12. (a) Let U and V be vector spaces of dimensions m and n, respectively. Suppose that $T: U \to V$ and $S: V \to U$ are linear maps such that $T \circ S = \mathrm{id}_V$. Prove that $m \ge n$. Hint: use A2#4 from last semester.

(b) Suppose $A \in M_{n \times m}$ and $B \in M_{m \times n}$ are matrices such that $AB = I_n$, the $n \times n$ identity matrix of A1#2. Prove that $m \ge n$. (Note: this is a concrete statement about matrices that would be very difficult to prove without the abstract theory.)