Mathematics V1208y
 Honors Mathematics B

Assignment \#2

Due February 5, 2016
Buy Volume II of Apostol (second edition).
Read Apostol Vol. I, §16.13-16.19 (pp. 597-613) or, equivalently, Apostol Vol. II, §2.13-2.19 (pp. 51-67).

In Apostol, do the following problems. Most are unstarred and for quick perusal. Notes on terminology: what Apostol calls null space is what we call kernel; what he (confusingly) calls range is what we call image; what he calls V_{n} is what we call \mathbb{R}^{n}.

Vol. I §16.4 (pp. 582-3) = Vol. II §2.8 (pp. 42-44) 4, 5, 6, 7, 8, 9, 10, 17, 18, 24, 28.
Vol. I §16.8 $(\mathrm{pp} .589-90)=$ Vol. II $\S 2.8(\mathrm{pp} .42-44) 4,6,10,22,23,24,25,27$.
Vol. I §16.12 (pp. 596-7) = Vol. II §2.12 (pp. 50-51) 1, *2, *5, 6, 11, 12, 13.
Vol. I §16.16 $($ pp. 603-4) $=$ Vol. II §2.16 $(\mathrm{pp} .57-58) 1,2,10,14$.
Also do the following. Starred problems are worth 10 points each. General hints: It will frequently be useful (a) to choose a basis for a subspace and extend to a basis for the whole space; (b) to define a linear map by using the construction principle.
*1. Prove the space $\mathcal{F}(\mathbb{N}, \mathbb{R})$ of sequences is infinite-dimensional.
2. Show that if two finite-dimensional vector spaces are isomorphic, then they have the same dimension.
*3. If W is a finite-dimensional vector space and $V \subset W$ is a subspace, prove that:
(a) V is finite-dimensional; (b) $\operatorname{dim} V \leq \operatorname{dim} W$; (c) if $\operatorname{dim} V=\operatorname{dim} W$, then $V=W$.
*4. (a) In \mathbb{R}^{3}, a line through the origin is the linear subspace $L=\{t \mathbf{c} \mid t \in \mathbb{R}\}$ for some constant $\mathbf{c} \neq \mathbf{0} \in \mathbb{R}^{3}$. Find a basis for L. Show that a line is 1-dimensional (!).
(b) In \mathbb{R}^{3}, a plane through the origin is the linear subspace $P=\left\{\mathbf{x} \in \mathbb{R}^{3} \mid \mathbf{x} \cdot \mathbf{c}=\mathbf{0}\right\}$ for some constant $\mathbf{c} \neq \mathbf{0} \in \mathbb{R}^{3}$. Find a basis for P in terms of the components c_{1}, c_{2}, c_{3} of \mathbf{c}. Show that a plane is 2 -dimensional (!!). Note: watch out, any c_{i} could be 0 .
(c) Prove that no line through the origin contains a plane through the origin.
5. Let V be a subspace of a finite-dimensional vector space W. Following the lecture, choose a basis X_{1}, \ldots, X_{k} for V and extend to a basis X_{1}, \ldots, X_{n} for W. Given $X=\sum_{i=1}^{n} a_{i} X_{i} \in W$, show that $X \in V \Leftrightarrow a_{k+1}=a_{k+2}=\cdots=a_{n}=0$.

CONTINUED OVERLEAF...

6. Let U_{n} be the vector space of polynomial functions $\mathbb{R} \rightarrow \mathbb{R}$ of degree $\leq n$.
(a) Show that the map $G: U_{n} \rightarrow \mathbb{R}^{k}$ given by $G(f)=(f(1), f(2), \ldots, f(k))$ is linear, and is surjective when $k \leq n+1$. Hint: consider the polynomials $f_{i}(x)=$ $(x-1)(x-2)(x-3) \cdots(x-i+1)(x-i-1) \cdots(x-k)$.
(b) Use rank-nullity to determine the dimension of the subspace of U_{n} consisting of polynomials satisfying $f(1)=f(2)=\cdots=f(k)=0$.
*7. Let U, V be finite-dimensional subspaces of a vector space X, and let

$$
W=\{a u+b v \mid u \in U, v \in V, a, b \in \mathbb{R}\}
$$

(a) Show that W is a subspace of X.
(b) Show there exist bases u_{1}, \ldots, u_{m} and v_{1}, \ldots, v_{n} for U and V, respectively, which both begin with the same basis for $U \cap V$, namely $u_{1}=v_{1}, \ldots, u_{k}=v_{k}$.
(c) Show that $u_{1}, \ldots, u_{m}, v_{k+1}, \ldots, v_{n}$ is then a basis for W.
(d) Prove that $\operatorname{dim} W=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim} U \cap V$.
(e) Illustrate with an example in $X=\mathbb{R}^{3}$.
*8. Let V be a vector space of dimension n.
(a) If $\mathbf{v} \neq \mathbf{0} \in V$, show there exists a linear $T: V \rightarrow \mathbb{R}$ such that $T(\mathbf{v})=1$.
(b) If $W \subset V$ is a hyperplane, that is, a subspace of dimension $n-1$, show there exists a linear $T: V \rightarrow \mathbb{R}$ such that $W=\operatorname{ker} T$.
(c) More generally, if $W \subset V$ is any subspace, show that for some k there exists a linear $T: V \rightarrow \mathbb{R}^{k}$ such that $W=\operatorname{ker} T$.
9. Let V be a finite-dimensional vector space, and let $S \subset V$ be an affine hyperplane, that is,

$$
S=\left\{u+x_{0} \mid u \in U\right\}
$$

where $U \subseteq V$ is a hyperplane and x_{0} is some fixed vector in V but not in U. Show that there is an unique linear $T: V \rightarrow \mathbb{R}$ such that $T(v)=1 \Leftrightarrow v \in S$.
10. Let V and W be finite-dimensional vector spaces. Show that a linear map $T: V \rightarrow W$ has a right inverse if and only if it is surjective, and a left inverse if and only if it is injective.
*11. Let U and V be vector spaces of dimensions m and n, respectively.
(a) If there exists a linear surjection $T: U \rightarrow V$, prove that $m \geq n$.
(b) If there exists a linear injection $T: U \rightarrow V$, prove that $m \leq n$.
*12. (a) Let U and V be vector spaces of dimensions m and n, respectively. Suppose that $T: U \rightarrow V$ and $S: V \rightarrow U$ are linear maps such that $T \circ S=\mathrm{id}_{V}$. Prove that $m \geq n$. Hint: use A2\#4 from last semester.
(b) Suppose $A \in M_{n \times m}$ and $B \in M_{m \times n}$ are matrices such that $A B=I_{n}$, the $n \times n$ identity matrix of A1\#2. Prove that $m \geq n$. (Note: this is a concrete statement about matrices that would be very difficult to prove without the abstract theory.)

