Mathematics V1208y Honors Mathematics B

Assignment \#13

Due Never

In problems employing Stokes's or Gauss's theorems, you may assume the relevant regions are of graph type.

Apostol §12.15 (pp. 447-8) 1a, 3, 5, 8.
Apostol §12.17 (pp. 452-3) 3, 10.
Apostol $\S 12.21$ (pp. 462-5) 1, 4, 5, 6, 7, 8, 9, 10, 11, 12. Note on 4-9: Apostol denotes the integrand in a surface integral by $F \cdot \mathbf{n} d S$, while I write $F \cdot d \mathbf{r}^{2}$. So to translate these statements into my notation, substitute $\nabla f \cdot d \mathbf{r}^{2}$ for $\partial f / \partial n d S$ everywhere.

As hinted in class, write down an analogue of Gauss's theorem for a 2-dimensional region and show that it can be quickly deduced from Green's theorem.

