Mathematics V1208y Honors Mathematics IV

Assignment \#12
Due April 29, 2016

Reading: Apostol, $\S \S 12.14-12.20$ (pp. 443-462).
*1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function. Express the subset of \mathbb{R}^{3} swept out by the graph of f as it rotates about the horizontal x-axis as a parametric surface in \mathbb{R}^{3} : the surface of revolution. Write down an expression for the surface area between $x=a$ and $x=b$, as an integral from a to b.
2. The torus $T \subseteq \mathbb{R}^{3}$ is the set of all vectors of the form $3 \mathbf{x}+\mathbf{y}$, where \mathbf{x} is of unit length and orthogonal to \mathbf{e}_{1}, and \mathbf{y} is of unit length and orthogonal to $\mathbf{x} \times \mathbf{e}_{1}$. Express the torus as a piecewise parametric smooth surface. Integrate your favorite function or vector field.
*3. Let $r: T \rightarrow S$ be a parametric surface and $\gamma:[a, b] \rightarrow T$ a path in the plane, so that $r \circ \gamma:[a, b] \rightarrow S$ is a path in space. Show that the tangent vector to $r \circ \gamma$ is orthogonal to the outward normal.
4. Suppose that a piecewise parametric surface can be expressed implicitly, that is, $S=$ $S_{1} \cup \cdots \cup S_{k}$ with S_{i} parametrized by $r_{i}: T_{i} \rightarrow S_{i}$ can be expressed as

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{3} \mid f(\mathbf{x})=0\right\}
$$

for a differentiable $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$. Show that at each point of $S, \nabla f$ is a nonzero scalar multiple of the outward normal $\partial r_{i} / \partial u \times \partial r_{i} / \partial v$. (Hint: what is $f \circ r_{i}$?) Give an example.
5. Apostol $\S 12.4$ (p. 424) 8, 10.
6. Apostol $\S 12.6$ (pp. 429-30) 2, *4.
7. Apostol $\S 12.10($ pp. 436-8) $* 5, * 6, * 7$.

Before doing the above problems, see the note on the back of this sheet about Apostol's notation for line and surface integrals.
8. Apostol $\S 12.13($ pp. $442-3) * 1,3, * 6, * 11$.

CONTINUED OVERLEAF...

A NOTE ON APOSTOL'S NOTATION FOR INTEGRALS

Before attempting problems where Apostol gives surface integrals, be sure to read his $\S 12.9$ (pp. 434-6), "Other notations for surface integrals." I have summarized 3 key points below.
(1) Line integrals. The LHS and RHS are Apostol's notation and my notation, respectively, for line integrals of vector fields in \mathbb{R}^{3} :

$$
\int_{C} P d x+Q d y+R d z=\int_{C}(P, Q, R) \cdot d \gamma
$$

In some sense we agree, since formally $d \gamma=\gamma^{\prime}(t) d t=\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right) d t=(d x, d y, d t)$. Just don't ask what these quantities really are! It's just formal notation. The real definition, as you know, is an integral from a to b with respect to t.
(2) Surface integrals of scalar fields, otherwise known as integrals with respect to surface area. Once again, Apostol's notation and my notation are:

$$
\iint_{S} \phi d S=\iint_{S} \phi\left\|d \mathbf{r}^{2}\right\|
$$

Again, the idea is that formally $d S=\left\|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right\| d u d v$, and the factors of $d u$ and $d v$ "cancel".
(3) Surface integrals of vector fields. Here our two notations are

$$
\iint_{S} F \cdot \mathbf{n} d S=\iint_{S} F \cdot d \mathbf{r}^{2}
$$

Yet again, formally this sort of makes sense since

$$
\mathbf{n}=\frac{\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}}{\left\|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right\|}, \quad d S=\left\|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right\| d u d v, \quad d \mathbf{r}^{2}=\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} d u d v
$$

When $F=(P, Q, R)$, Apostol sometimes denotes the same surface integral by

$$
\iint_{S} P d y \wedge d z+Q d z \wedge d x+R d x \wedge d y
$$

The formal justification here is that the first component of $d \mathbf{r}^{2}$ is

$$
\left(\frac{\partial y}{\partial u} \frac{\partial z}{\partial v}-\frac{\partial z}{\partial u} \frac{\partial y}{\partial v}\right) d u d v=\frac{\partial(y, z)}{\partial(u, v)} d u d v
$$

using the notation for the Jacobian determinant introduced on p. 394, and similarly for the other two components.

