Mathematics V1208y Honors Mathematics B

Assignment \#11

Due April 22, 2016
Reading: Apostol, §11.26-11.33 (pp. 392-413) and §§12.1-12.9 (pp. 417-436).

1. Apostol $\S 11.15$ (pp. 371-3) *7, 11, * 14,15 .
2. (a) Prove the comparison theorem for multiple integrals: if Q is a closed rectangle, f and g are integrable on Q, and $f \leq g$, then $\iint_{Q} f \leq \iint_{Q} g$.
(b) Same as (a), except that the domain of integration is an arbitrary bounded $S \subset \mathbb{R}^{n}$.
(c) If $S \subset T \subset \mathbb{R}^{n}$ are bounded, and if $f \geq 0$ is integrable on both S and T, show that $\iint_{S} f \leq \iint_{T} f$.
*3. Suppose $f: Q \rightarrow \mathbb{R}$ is continuous, where $Q \subset \mathbb{R}^{n-1}$ is a closed rectangle, and (for some fixed index i)

$$
P=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid\left(x_{1}, \ldots, \hat{x}_{i}, \ldots\right) \in Q \text { and } x_{i}=f\left(x_{1}, \ldots, \hat{x}_{i}, \ldots\right)\right\} .
$$

Show that for any continuous function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}, \iint_{P} \phi=0$. Sketch in \mathbb{R}^{2} or \mathbb{R}^{3}.
*4. (a) Show that if S and T are disjoint subsets of \mathbb{R}^{n}, and if $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous function such that $\iint_{S} \phi$ and $\iint_{T} \phi$ exist, then $\iint_{S \cup T} \phi$ exists and equals the sum of the previous two integrals. Hint: use linearity for multiple integrals.
(b) Same as (a), except that S and T now intersect in a set P as in 1 above. You may regard this as a concatenation theorem for multiple integrals.
5. Let a, b, c, d be continuous functions $[0,1] \rightarrow \mathbb{R}$ with $a<b$ and $c<d$, and let $Q(t)$ be the rectangle $[a(t), b(t)] \times[c(t), d(t)]$. Show that if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a continuous function, then $\iint_{Q(t)} f$ is a continuous function of t.
6. Apostol $\S 11.22(\mathrm{pp} .385-7) * 1 \mathrm{ad}, 2,4,{ }^{*} 5,6,7,8 \mathrm{ab}$. (In 5 , the curve C does not really have to be a simple closed curve; it could be any piecewise C^{1} closed curve.)
7. Apostol $\S 11.28$ (pp. 399-401) $8, * 9, * 14, * 16$ abc. This last computation is a classic: "A mathematician is one to whom that is as obvious as that twice two makes four is to you" —Lord Kelvin. We didn't define \int_{0}^{∞} last semester but it just means $\lim _{r \rightarrow \infty} \int_{0}^{r}$.
8. Apostol $\S 11.34$ (pp. 413-6) 1, 7, 18, 33a.

