Mathematics G4403y
 Modern Geometry

Answers to Practice Final
May 12, 2014

1. The action of $O(n)$ on \mathbf{R}^{n} preserves g and interchanges all radial lines, so it suffices to consider the line through e_{n}. If $\gamma(t)$ is parametrized by arclength, then $\left\langle\gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle=1$ and hence $0=d\left\langle\gamma^{\prime}, \gamma^{\prime}\right\rangle=2\left\langle D \gamma^{\prime} / d t, \gamma^{\prime}\right\rangle$. So $D \gamma^{\prime} / d t \perp \gamma^{\prime}$ (wrt g, hence wrt the standard metric too), so $D \gamma^{\prime} / d t$ is tangent to a sphere S centered at 0 . However, the action of $O(n-1) \subset O(n)$ preserves γ and g and hence also $D \gamma^{\prime} / d t$ but acts on $T_{\gamma(t)} S$ fixing only 0 . Hence $D \gamma^{\prime} / d t=0$.
2. By definition of normal coordinates, all radial lines are geodesics, so for all indices i, j and for all $a, b \in \mathbf{R}, 0=\nabla_{a \partial_{i}+b \partial_{j}}\left(a \partial_{i}+b \partial_{j}\right)$. The coefficient of $a b$ is $\nabla_{\partial_{i}} \partial_{j}+\nabla_{\partial_{j}} \partial_{i}=$ $2 \nabla_{\partial_{i}} \partial_{j}=2 \sum \Gamma_{i j}^{k} \partial_{k}$ since the Levi-Civita connection is torsion-free. Hence all $\Gamma_{i j}^{k}=0$.
3. Choose a bi-invariant metric. We proved in Assignment $10 \# 7 d$ that the exponential map in the Lie-theoretic sense agrees with the Riemannian exponential map $\exp _{e}$ based at $e \in G$. But a compact manifold is complete, and by the Hopf-Rinow theorem, on a complete manifold the exponential map based at any point is surjective.
4. (a) $I I(x)$ is the curvature at 0 of the graph of $f(t)=(t x)^{T} A(t x)=t^{2} x^{T} A x$, namely $2 x^{T} A x$ (times the unit normal e_{n+1}). (b) The sectional curvature is the Gaussian curvature of the intersection of $\left\langle e_{i}, e_{j}, e_{n+1}\right\rangle$ with M, namely det $\left.I I\right|_{\left\langle e_{i}, e_{j}\right\rangle}=4\left(a_{i i} a_{j j}-\right.$ $\left.a_{i j}^{2}\right)$. (c) Finally, by Gauss's formula, $R_{i, j, k, l}=I I(i, l) I I(j, k)-I I(i, k) I I(j, l)=$ $4\left(a_{i l} a_{j k}-a_{i k} a_{j l}\right)$. Notice this agrees with (b) when we take $k=j, l=i$.
5. For $u \in T_{p} M, v \in T_{q} N$, choose geodesics $\beta(s), \gamma(t)$ through u, v; then $\beta \times \gamma$: $(-\epsilon, \epsilon) \times(-\delta, \delta) \rightarrow M \times N$ is an isometric immersion, so the sectional curvature of $\langle u, v\rangle$ is zero.
6. For any $p \in M$, let $v \in T_{p} M$ be the tangent vector along the line. Then $I I(v)=0$, so $I I$ is indefinite, so its two eigenvalues κ_{1}, κ_{2} cannot both be nonzero of the same sign, so $\kappa_{1} \kappa_{2} \leq 0$.
7. For $n<2$ this is vacuous. For $n \geq 2$, since $T T^{n}=\mathbf{R}^{n} \times T^{n}$, the space of all 2-planes in $T M$ is $\operatorname{Gr}(2, n) \times T^{n}$, which is compact. Hence the sectional curvature, if positive, would be bounded below by a positive constant. This contradicts Bonnet's theorem, since $\pi_{1} T^{n}=\mathbf{Z}^{n}$.
8. (a) Both ∇_{v} and A_{v} are C^{∞}-linear in v, so $\nabla+A$ is too. And $(\nabla+A)(f s)=$ $\nabla(f s)+A(f s)=(d f) s+f \nabla s+f A s=(d f) s+(\nabla+A) s$.
(b) $(\nabla+A)(\nabla+A) s=\nabla^{2} s+A \nabla s+\nabla(A s)=\nabla^{2} s+A \nabla s+(d A) s-A \nabla s=\nabla^{2} s+(d A) s$, so $F_{\nabla+A}=F_{\nabla}+d A$.
(c) If L has a flat connection ∇, then $c_{1}(L)=\left[F_{\nabla}\right]=[0]=0$. Conversely, if $0=$ $c_{1}(L)=\left[F_{\nabla}\right] \in H^{2}(M, \mathbf{C})$, then $F_{\nabla}=d A$ for some $A \in \Omega^{1}(M, \mathbf{C})$. Let $\tilde{\nabla}=\nabla-A ;$ then by (b), $\tilde{\nabla}$ is flat.
