Mathematics G4402x Modern Geometry

Answers to Practice Final

- **1.** For any $p, q \in M$, choose a smooth path $\gamma : [0,1] \to M$ with $\gamma(0) = p, \gamma(1) = q$. Then for any $g \in C^{\infty}(N)$, by the chain rule $(g \circ f \circ \gamma)'(t) = D_{f(\gamma(t))}g D_{\gamma(t)}f D_t \gamma = 0$, so $g \circ f \circ \gamma$ is constant and g(f(p)) = g(f(q)). Since there is a smooth function gseparating any two distinct points, f(p) = f(q); hence f is constant.
- **2.** If $f: G \to H$ is as stated, then for any $g \in G$ the diagram

$$\begin{array}{ccc} G & \stackrel{\cdot g}{\longrightarrow} & G \\ f \downarrow & & \downarrow f \\ H & \stackrel{\cdot f(g)}{\longrightarrow} & H \end{array}$$

commutes, and hence so does the derivative diagram

$$\begin{array}{cccc} T_eG & \xrightarrow{D_eg} & T_gG \\ & & & & \downarrow^{D_gf} \\ & & & & \downarrow^{D_gf} \\ & T_eH & \xrightarrow{D_ef(g)} & T_{f(g)}H. \end{array}$$

Since the rows are isomorphisms, the columns have the same rank, so rank $D_g f$ is independent of g. This must equal dim G, for if not, the Rank Theorem says that f is not injective even in any neighborhood of e. Hence f is an immersion.

- **3.** We compute in local coordinates x_i ; let $\partial_i = \partial/\partial x_i$, $\eta = \sum_i \eta_i dx_i$, $X = \sum_i X_i \partial_i$, $Y = \sum_i Y_i \partial_i$. Then $d\eta = \sum_{i,j} (\partial_j \eta_i) dx_j \wedge dx_i$, so $d\eta(X, Y) = \sum_{i,j} (\partial_j \eta_i) (X_j Y_i - Y_j X_i)$. On the other hand, $X\eta(Y) = X(\sum_i \eta_i Y_i) = \sum_{i,j} X_j \partial_j (\eta_i Y_i) = \sum_{i,j} X_j (Y_i \partial_j \eta_i + \eta_i \partial_j Y_i)$, and similarly $Y\eta(X) = \sum_{i,j} Y_j (X_i \partial_j \eta_i + \eta_i \partial_j X_i)$. And $[X, Y] = \sum_{i,j} X_i (\partial_i Y_j) \partial_j - Y_j (\partial_j X_i) \partial_i = \sum_{i,j} (X_j \partial_j Y_i - Y_j \partial_j X_i) \partial_i$, so $\eta[X, Y] = \sum_{i,j} \eta_i (X_j \partial_j Y_i - Y_j \partial_j X_i)$. So the RHS becomes a sum over i, j of 6 terms, 4 of which cancel, leaving only the LHS.
- **4.** Since $\eta(Y) \in \Omega^0(M)$, $L_X(\eta(Y)) = X\eta(Y)$. Also, we know $L_XY = [X, Y]$. By the Cartan formula, $(L_X\eta)(Y) = (i_Xd\eta + di_X\eta)(Y) = d\eta(X,Y) + d(\eta(X))(Y) = d\eta(X,Y) + Y\eta(X)$. The result now follows from the previous problem.
- 5. Trivial if k = 0. If k > 0, then $M \times N$ compact, connected, and orientable implies that M and N are too. (To see orientability, observe that if ω is an orientation form for $M \times N$ and v_1, \ldots, v_m are a basis for T_pM , then $i_{v_1} \cdots i_{v_m} \omega|_{\{p\} \times N}$ is an orientation form for N.) Hence $H^n(N) \cong \mathbb{R} \cong H^0(M)$, so by the Künneth formula, $H^n(M \times N) \neq 0$. If 0 < n < k, this disagrees with the de Rham cohomology of S^k . So n = 0 or k. In the former case, N is connected of dimension 0, hence a point; in the latter case, the same is true of M.

- 6. Since d commutes with pullback, this realizes the de Rham complex of \mathbb{RP}^n as a subcomplex of that of S^n . Since \mathbb{RP}^n is connected, $H^0(\mathbb{RP}^n) = \mathbb{R}$. Since it is of dimension n, $H^k(\mathbb{RP}^n) = 0$ for k > n. Since $H^k(S^n) = 0$ for 0 < k < n, every closed form ν of those degrees in this subcomplex is exact, $\nu = d\eta$. But then, if $\gamma : S^k \to S^k$ is the antipodal map, $(\eta + \gamma^* \eta)/2$ is in the subcomplex and $d(\eta + \gamma^* \eta)/2 = \nu$. Hence $H^k(\mathbb{RP}^n) = 0$ for 0 < k < n. Finally, we know that for $\nu \in \Omega^n(S^n)$, $\nu = d\eta$ if and only if $\int_{S^n} \nu = 0$. If such a ν is also in the subcomplex, then $\nu = d(\eta + \gamma^* \eta)/2$ is exact in the subcomplex too, so \int_{S^n} gives a well-defined injection $H^n(\mathbb{RP}^n) \to \mathbb{R}$. But γ preserves the orientation of S^n if and only if n is odd. (To see this, consider its action on the orientation form $\omega = i_n dx_1 \wedge \cdots \wedge dx_{n+1}$.) So if n is even, any γ -invariant form has integral 0, so the injection is 0 and $H^n(\mathbb{RP}^n) = 0$. On the other hand, if n is odd, then ω is a γ -invariant form with nonzero integral, so the injection is nonzero and $H^n(\mathbb{RP}^n) \cong \mathbb{R}$.
- 7. Let $i : \mathbb{CP}^{n-1} \to V$ be the obvious inclusion, $\pi : V \to \mathbb{CP}^{n-1}$ the obvious projection. Then $\pi \circ i = \text{id}$, and $\Phi(t, [z_0, \ldots, z_n]) = [tz_0, z_1, \ldots, z_n]$ is a smooth homotopy from $i \circ \pi$ to id, so *i* induces an isomorphism on de Rham cohomology.

In the same way, include S^{2n-1} as the unit sphere in $U \cap V \simeq \mathbb{R}^{2n} \setminus 0$ and use the homotopy $\Phi(t, (x_1, \ldots, x_{2n})) = (x_1, \ldots, x_{2n})/(t + (1 - t)||(x_1, \ldots, x_{2n})||)$ to get the desired isomorphism.

Now apply Mayer-Vietoris to get

$$0 \longrightarrow H^{0}\mathbb{C}\mathbb{P}^{n} \longrightarrow H^{0}\mathbb{C}^{n} \oplus H^{0}\mathbb{C}\mathbb{P}^{n-1} \longrightarrow H^{0}S^{2n-1}$$
$$\longrightarrow H^{1}\mathbb{C}\mathbb{P}^{n} \longrightarrow H^{1}\mathbb{C}^{n} \oplus H^{1}\mathbb{C}\mathbb{P}^{n-1} \longrightarrow H^{1}S^{2n-1}$$
$$\longrightarrow H^{2}\mathbb{C}\mathbb{P}^{n} \longrightarrow H^{2}\mathbb{C}^{n} \oplus H^{2}\mathbb{C}\mathbb{P}^{n-1} \longrightarrow H^{2}S^{2n-1}$$
$$\longrightarrow H^{3}\mathbb{C}\mathbb{P}^{n} \longrightarrow H^{3}\mathbb{C}^{n} \oplus H^{3}\mathbb{C}\mathbb{P}^{n-1} \longrightarrow \dots$$

The first row is just constants, so the first connecting homomorphism is zero. By induction we know $H^1 \mathbb{CP}^{n-1} = 0$, so $H^1 \mathbb{CP}^n = 0$. Likewise since $H^{k-1}S^{2n-1} = H^k S^{2n-1} = 0$ for 1 < k < 2n-1, we find $H^k \mathbb{CP}^n \cong H^k \mathbb{CP}^{n-1}$ for 1 < k < 2n-1. Finally we have

$$\begin{array}{cccc} & H^{2n-2}S^{2n-1} \\ \longrightarrow & H^{2n-1}\mathbb{CP}^n & \longrightarrow & H^{2n-1}\mathbb{CP}^{n-1} & \longrightarrow & H^{2n-1}S^{2n-1} \\ & \longrightarrow & H^{2n}\mathbb{CP}^n & \longrightarrow & H^{2n}\mathbb{CP}^{n-1}; \end{array}$$

the 1st, 3rd and 6th terms are 0 while the 4th is $\cong \mathbb{R}$, so we get $H^{2n-1}\mathbb{CP}^n = 0$, $H^{2n}\mathbb{CP}^n \cong \mathbb{R}$, as desired.