Mathematics G4402x Modern Geometry

Answers to Practice Final

1. For any $p, q \in M$, choose a smooth path $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=p, \gamma(1)=q$. Then for any $g \in C^{\infty}(N)$, by the chain rule $(g \circ f \circ \gamma)^{\prime}(t)=D_{f(\gamma(t))} g D_{\gamma(t)} f D_{t} \gamma=0$, so $g \circ f \circ \gamma$ is constant and $g(f(p))=g(f(q))$. Since there is a smooth function g separating any two distinct points, $f(p)=f(q)$; hence f is constant.
2. If $f: G \rightarrow H$ is as stated, then for any $g \in G$ the diagram

commutes, and hence so does the derivative diagram

Since the rows are isomorphisms, the columns have the same rank, so rank $D_{g} f$ is independent of g. This must equal $\operatorname{dim} G$, for if not, the Rank Theorem says that f is not injective even in any neighborhood of e. Hence f is an immersion.
3. We compute in local coordinates x_{i}; let $\partial_{i}=\partial / \partial x_{i}, \eta=\sum_{i} \eta_{i} d x_{i}, X=\sum_{i} X_{i} \partial_{i}$, $Y=\sum_{i} Y_{i} \partial_{i}$. Then $d \eta=\sum_{i, j}\left(\partial_{j} \eta_{i}\right) d x_{j} \wedge d x_{i}$, so $d \eta(X, Y)=\sum_{i, j}\left(\partial_{j} \eta_{i}\right)\left(X_{j} Y_{i}-Y_{j} X_{i}\right)$. On the other hand, $X \eta(Y)=X\left(\sum_{i} \eta_{i} Y_{i}\right)=\sum_{i, j} X_{j} \partial_{j}\left(\eta_{i} Y_{i}\right)=\sum_{i, j} X_{j}\left(Y_{i} \partial_{j} \eta_{i}+\eta_{i} \partial_{j} Y_{i}\right)$, and similarly $Y \eta(X)=\sum_{i, j} Y_{j}\left(X_{i} \partial_{j} \eta_{i}+\eta_{i} \partial_{j} X_{i}\right)$. And $[X, Y]=\sum_{i, j} X_{i}\left(\partial_{i} Y_{j}\right) \partial_{j}-$ $Y_{j}\left(\partial_{j} X_{i}\right) \partial_{i}=\sum_{i, j}\left(X_{j} \partial_{j} Y_{i}-Y_{j} \partial_{j} X_{i}\right) \partial_{i}$, so $\eta[X, Y]=\sum_{i, j} \eta_{i}\left(X_{j} \partial_{j} Y_{i}-Y_{j} \partial_{j} X_{i}\right)$. So the RHS becomes a sum over i, j of 6 terms, 4 of which cancel, leaving only the LHS.
4. Since $\eta(Y) \in \Omega^{0}(M), L_{X}(\eta(Y))=X \eta(Y)$. Also, we know $L_{X} Y=[X, Y]$. By the Cartan formula, $\left(L_{X} \eta\right)(Y)=\left(i_{X} d \eta+d i_{X} \eta\right)(Y)=d \eta(X, Y)+d(\eta(X))(Y)=d \eta(X, Y)+$ $Y \eta(X)$. The result now follows from the previous problem.
5. Trivial if $k=0$. If $k>0$, then $M \times N$ compact, connected, and orientable implies that M and N are too. (To see orientability, observe that if ω is an orientation form for $M \times N$ and v_{1}, \ldots, v_{m} are a basis for $T_{p} M$, then $\left.i_{v_{1}} \cdots i_{v_{m}} \omega\right|_{\{p\} \times N}$ is an orientation form for N.) Hence $H^{n}(N) \cong \mathbb{R} \cong H^{0}(M)$, so by the Künneth formula, $H^{n}(M \times N) \neq 0$. If $0<n<k$, this disagrees with the de Rham cohomology of S^{k}. So $n=0$ or k. In the former case, N is connected of dimension 0 , hence a point; in the latter case, the same is true of M.
6. Since d commutes with pullback, this realizes the de Rham complex of $\mathbb{R} \mathbb{P}^{n}$ as a subcomplex of that of S^{n}. Since $\mathbb{R P}^{n}$ is connected, $H^{0}\left(\mathbb{R P}^{n}\right)=\mathbb{R}$. Since it is of dimension $n, H^{k}\left(\mathbb{R}^{n}\right)=0$ for $k>n$. Since $H^{k}\left(S^{n}\right)=0$ for $0<k<n$, every closed form ν of those degrees in this subcomplex is exact, $\nu=d \eta$. But then, if $\gamma: S^{k} \rightarrow S^{k}$ is the antipodal map, $\left(\eta+\gamma^{*} \eta\right) / 2$ is in the subcomplex and $d\left(\eta+\gamma^{*} \eta\right) / 2=\nu$. Hence $H^{k}\left(\mathbb{R}^{n}\right)=0$ for $0<k<n$. Finally, we know that for $\nu \in \Omega^{n}\left(S^{n}\right), \nu=d \eta$ if and only if $\int_{S^{n}} \nu=0$. If such a ν is also in the subcomplex, then $\nu=d\left(\eta+\gamma^{*} \eta\right) / 2$ is exact in the subcomplex too, so $\int_{S^{n}}$ gives a well-defined injection $H^{n}\left(\mathbb{R} \mathbb{P}^{n}\right) \rightarrow \mathbb{R}$. But γ preserves the orientation of S^{n} if and only if n is odd. (To see this, consider its action on the orientation form $\omega=i_{\mathbf{n}} d x_{1} \wedge \cdots \wedge d x_{n+1}$.) So if n is even, any γ-invariant form has integral 0 , so the injection is 0 and $H^{n}\left(\mathbb{R} \mathbb{P}^{n}\right)=0$. On the other hand, if n is odd, then ω is a γ-invariant form with nonzero integral, so the injection is nonzero and $H^{n}\left(\mathbb{R} \mathbb{P}^{n}\right) \cong \mathbb{R}$.
7. Let $i: \mathbb{C P}^{n-1} \rightarrow V$ be the obvious inclusion, $\pi: V \rightarrow \mathbb{C P}^{n-1}$ the obvious projection. Then $\pi \circ i=\mathrm{id}$, and $\Phi\left(t,\left[z_{0}, \ldots, z_{n}\right]\right)=\left[t z_{0}, z_{1}, \ldots, z_{n}\right]$ is a smooth homotopy from $i \circ \pi$ to id, so i induces an isomorphism on de Rham cohomology.
In the same way, include $S^{2 n-1}$ as the unit sphere in $U \cap V \simeq \mathbb{R}^{2 n} \backslash 0$ and use the homotopy $\Phi\left(t,\left(x_{1}, \ldots, x_{2 n}\right)\right)=\left(x_{1}, \ldots, x_{2 n}\right) /\left(t+(1-t)\left\|\left(x_{1}, \ldots, x_{2 n}\right)\right\|\right)$ to get the desired isomorphism.
Now apply Mayer-Vietoris to get

$$
\begin{aligned}
& 0 \longrightarrow H^{0} \mathbb{C P}^{n} \longrightarrow H^{0} \mathbb{C}^{n} \oplus H^{0} \mathbb{C P}^{n-1} \longrightarrow H^{0} S^{2 n-1} \\
& \longrightarrow H^{1} \mathbb{C P}^{n} \longrightarrow H^{1} \mathbb{C}^{n} \oplus H^{1} \mathbb{C} \mathbb{P}^{n-1} \longrightarrow H^{1} S^{2 n-1} \\
& \longrightarrow H^{2} \mathbb{C P}^{n} \longrightarrow H^{2} \mathbb{C}^{n} \oplus H^{2} \mathbb{C} \mathbb{P}^{n-1} \longrightarrow H^{2} S^{2 n-1} \\
& \longrightarrow H^{3} \mathbb{C P}^{n} \longrightarrow H^{3} \mathbb{C}^{n} \oplus H^{3} \mathbb{C P}^{n-1} \longrightarrow \quad \ldots
\end{aligned}
$$

The first row is just constants, so the first connecting homomorphism is zero. By induction we know $H^{1} \mathbb{C P}^{n-1}=0$, so $H^{1} \mathbb{C P}^{n}=0$. Likewise since $H^{k-1} S^{2 n-1}=$ $H^{k} S^{2 n-1}=0$ for $1<k<2 n-1$, we find $H^{k} \mathbb{C P}^{n} \cong H^{k} \mathbb{C P}^{n-1}$ for $1<k<2 n-1$. Finally we have

$$
\begin{array}{lllll}
& & & & H^{2 n-2} S^{2 n-1} \\
\longrightarrow & H^{2 n-1} \mathbb{C P}^{n} & \longrightarrow & H^{2 n-1} \mathbb{C P}^{n-1} & \longrightarrow
\end{array} H^{2 n-1} S^{2 n-1}
$$

the 1 st, 3 rd and 6 th terms are 0 while the 4 th is $\cong \mathbb{R}$, so we get $H^{2 n-1} \mathbb{C P}^{n}=0$, $H^{2 n} \mathbb{C P}^{n} \cong \mathbb{R}$, as desired.

