Mathematics G4403y
 Modern Geometry

Assignment \#9

Due February 19, 2014

1. Let M be an oriented Riemannian n-manifold. Show that there is a unique $\Omega \in \Omega^{n}(M)$, called the volume form, such that $\Omega\left(e_{1}, \ldots, e_{n}\right)=1$ whenever e_{1}, \ldots, e_{n} is an oriented orthonormal basis for any $T_{p} M$. Hint: show that, if x_{i} are any oriented coordinates, $\Omega=\sqrt{\operatorname{det}\left(g_{i j}\right)} d x_{1} \wedge \cdots \wedge d x_{n}$.
2. Let G be a Lie group, $\ell_{g}, r_{g}: G \rightarrow G$ left and right multiplication by g. A metric \langle,$\rangle is$ said to be left-invariant if for all $g \in G,\left\langle\left(\ell_{g}\right)_{*} v,\left(\ell_{g}\right)_{*} w\right\rangle=\langle v, w\rangle$, and right-invariant if a similar condition holds for r_{g}. It is bi-invariant if it is both left- and right-invariant. This exercise will show that a compact connected Lie group has a bi-invariant metric.
(a) Show that any Lie group G of dimension n has a left-invariant metric, and a nonzero left-invariant n-form ω : that is, one satisfying $\ell_{g}^{*} \omega=\omega$ for each g.
(b) If G is compact and connected, show that ω is also right-invariant. Hint: show first that $r_{g}^{*} \omega=f(g) \omega$ for some $f \in C^{\infty}(G)$. Then show that f is a homomorphism from G into the multiplicative group of \mathbf{R}. Then use compactness.
(c) Let \langle,$\rangle be a left-invariant metric on G$ compact and connected. Let ω be as in (b), with sign changed if necessary to ensure $\int_{G} \omega>0$. Show that

$$
\langle\langle u, v\rangle\rangle=\int_{G}\left\langle\left(r_{g}\right)_{*} u,\left(r_{g}\right)_{*} v\right\rangle \omega
$$

defines a new, bi-invariant Riemannian metric on G.
3. Let M be a smooth manifold. If $\nabla^{1}, \ldots, \nabla^{k}$ are connections on $T M$ and $\psi_{1}, \ldots, \psi_{k} \in$ $C^{\infty}(M)$ satisfy $\sum_{i} \psi_{i} \equiv 1$, show that $\sum_{i} \psi_{i} \nabla^{i}$ is also a connection.
4. Let M be a smooth manifold, ∇ and $\tilde{\nabla}$ connections on $T M$.
(a) Show that the torsion $\tau_{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$ is a tensor field of type $(1,2)$.
(b) Show that the difference $\nabla-\tilde{\nabla}$ is a tensor field of type $(1,2)$.
(c) Conversely, if A is any tensor field of type (1,2), show that $\nabla+A$ is a connection.
5. Let $H^{n}=\left\{\mathbf{x} \in \mathbf{R}^{n} \mid x_{n}>0\right\}$ denote the n-dimensional upper half-space. For $c \in \mathbf{R}^{+}$ define a Riemannian metric on H^{n} by

$$
g_{i j}(\mathbf{x})=\frac{c}{x_{n}^{2}} \delta_{i j}
$$

(a) Calculate the Christoffel symbols of the Levi-Civita connection.
(b) Show that the geodesics are half-lines and semicircles that intersect the hyperplane $x_{n}=0$ orthogonally, suitably parametrized. Hint: first do the case $n=2$; for the general case show that you can change coordinates isometrically so that the initial tangent vector lies in the x_{1}, x_{n}-plane.
6. Let $\gamma:[a, b] \rightarrow M$ be a parametric curve on a Riemannian manifold. Assume for simplicity that $\gamma^{\prime}(a) \neq 0, \gamma^{\prime}(b) \neq 0$. Define the parallel transport $T_{\gamma(a)} M \rightarrow T_{\gamma(b)} M$ by taking a tangent vector at $\gamma(a)$, extending to a parallel vector field along γ, and evaluating at $\gamma(b)$. Show that parallel transport is linear, preserves the inner product, and preserves the orientation if M is oriented.
7. In Euclidean space, the parallel transport of a vector between two points does not depend on the choice of the curve between them. Give an example to show that this may be false on a general Riemannian manifold.

