Mathematics G4403y Modern Geometry

Assignment #9 Due February 19, 2014

- **1.** Let M be an oriented Riemannian n-manifold. Show that there is a unique $\Omega \in \Omega^n(M)$, called the *volume form*, such that $\Omega(e_1, \ldots, e_n) = 1$ whenever e_1, \ldots, e_n is an oriented orthonormal basis for any $T_p M$. Hint: show that, if x_i are any oriented coordinates, $\Omega = \sqrt{\det(g_{ij})} dx_1 \wedge \cdots \wedge dx_n$.
- 2. Let G be a Lie group, $\ell_g, r_g : G \to G$ left and right multiplication by g. A metric \langle , \rangle is said to be *left-invariant* if for all $g \in G$, $\langle (\ell_g)_* v, (\ell_g)_* w \rangle = \langle v, w \rangle$, and *right-invariant* if a similar condition holds for r_g . It is *bi-invariant* if it is both left- and right-invariant. This exercise will show that a compact connected Lie group has a bi-invariant metric.

(a) Show that any Lie group G of dimension n has a left-invariant metric, and a nonzero left-invariant n-form ω : that is, one satisfying $\ell_q^* \omega = \omega$ for each g.

(b) If G is compact and connected, show that ω is also right-invariant. Hint: show first that $r_g^*\omega = f(g)\omega$ for some $f \in C^{\infty}(G)$. Then show that f is a homomorphism from G into the multiplicative group of **R**. Then use compactness.

(c) Let \langle , \rangle be a left-invariant metric on G compact and connected. Let ω be as in (b), with sign changed if necessary to ensure $\int_G \omega > 0$. Show that

$$\langle \langle u, v \rangle \rangle = \int_G \langle (r_g)_* u, (r_g)_* v \rangle \, \omega$$

defines a new, bi-invariant Riemannian metric on G.

- **3.** Let M be a smooth manifold. If $\nabla^1, \ldots, \nabla^k$ are connections on TM and $\psi_1, \ldots, \psi_k \in C^{\infty}(M)$ satisfy $\sum_i \psi_i \equiv 1$, show that $\sum_i \psi_i \nabla^i$ is also a connection.
- **4.** Let *M* be a smooth manifold, ∇ and $\tilde{\nabla}$ connections on *TM*.

(a) Show that the torsion $\tau_{\nabla}(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$ is a tensor field of type (1, 2).

- (b) Show that the difference $\nabla \tilde{\nabla}$ is a tensor field of type (1,2).
- (c) Conversely, if A is any tensor field of type (1, 2), show that $\nabla + A$ is a connection. CONTINUED OVERLEAF...

5. Let $H^n = {\mathbf{x} \in \mathbf{R}^n | x_n > 0}$ denote the *n*-dimensional upper half-space. For $c \in \mathbf{R}^+$ define a Riemannian metric on H^n by

$$g_{ij}(\mathbf{x}) = \frac{c}{x_n^2} \,\delta_{ij}.$$

(a) Calculate the Christoffel symbols of the Levi-Civita connection.

(b) Show that the geodesics are half-lines and semicircles that intersect the hyperplane $x_n = 0$ orthogonally, suitably parametrized. Hint: first do the case n = 2; for the general case show that you can change coordinates isometrically so that the initial tangent vector lies in the x_1, x_n -plane.

- 6. Let $\gamma : [a, b] \to M$ be a parametric curve on a Riemannian manifold. Assume for simplicity that $\gamma'(a) \neq 0$, $\gamma'(b) \neq 0$. Define the *parallel transport* $T_{\gamma(a)}M \to T_{\gamma(b)}M$ by taking a tangent vector at $\gamma(a)$, extending to a parallel vector field along γ , and evaluating at $\gamma(b)$. Show that parallel transport is linear, preserves the inner product, and preserves the orientation if M is oriented.
- 7. In Euclidean space, the parallel transport of a vector between two points does not depend on the choice of the curve between them. Give an example to show that this may be false on a general Riemannian manifold.